最新アプリケーション
Volume 4
Food & Pharmaceutical
食品 & 医薬品
CONTENTS

Food & Safety

- ICP-MSを用いた食品中のヨウ素分析 ... 7
- HPLC-ICP-MSを用いた玄米に含まれる鉛の形態別分析 11
- ファーニス原子吸光分析法による食用油中の有害金属の定量 17
- BTEX類によるオリーブオイルの汚染 ... 23
- DSA/TOFを用いた大豆オイル混合のオリーブオイルの迅速分析 25
- UHPLC-TOFを用いたツナ缶のエポキシフェノールからなるコーティング剤BADGEの定量 29
- DSA/TOFを使用したアップルジュース混合のザクロジュースの迅速スクリーニング ... 33

Pharmaceutical & Nutraceutical

- フレーム原子吸光法によるマルチミネラル／マルチビタミンタブレット中の元素分析 ... 39
- AxiON2TOFMSの精密質量、高感度、広いダイナミックレンジを用いた不純物の同定 ... 43
- 元素不純物分析に関する新しいUSP：NexION300X ICP-MSによる対応 47
- 新しいUSP Chapter<232> と Chapter<233>の施行について：製剤中の元素不純物 ... 59

バーキンエルマージャパンWEBサイトから技術資料をダウンロードいただけます。

http://www.perkinelmer.co.jp

※技術資料のダウンロードには登録が必要です（無料）

【登録について】
1. WEB会員サービス（http://www.perkinelmer.co.jp/web_members/index.html）にアクセス
2. メールアドレス等を入力して登録を行ってください。
Food & Safety
ICP-MSを用いた食品中のヨウ素分析
Iodine analysis in food sample using by ICP-MS

概要
ヨウ素は生体必須元素として知られており、我々はヨウ素を海藻や魚介類、サプリメントから摂取しています。こうした食品に含まれるヨウ素の量を精確に測定するために必要な、前処理から定量法までをご紹介します。定量手法としては、高感度な分析手法であるICP-MS法を用いました。

Keywords：ICP-MS、ヨウ素、食品

1. はじめに
ヨウ素は甲状腺ホルモンの合成に必要な、生体必須元素として知られています。主に海藻、海産物、またサプリメントから摂取されるヨウ素は、血液中から甲状腺に集まり、蓄積します。欠乏しても過剰にもなる甲状腺の機能低下の原因となるため、適量を摂取することが重要です。「第6次改定日本人の栄養所要量について」によると、ヨウ素の摂取量は150μg/日、許容上限摂取量は3mg/日となっています（いずれも成人）。一方で、甲状腺の疾患を持つ人は、ヨウ素の摂取制限が必要な場合があり、食品中のヨウ素量の把握は重要なことといえます。
ヨウ素は揮発性が高いため、サンプル前処理が困難で、ICP-MS分析においてはメモリーが残りやすい元素です。

本報では、このようなヨウ素の性質を踏まえた、精確なヨウ素分析方法をご紹介します。

表1 食品に含まれるヨウ素

<table>
<thead>
<tr>
<th>食品名</th>
<th>ヨウ素量 (μg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>まこんぶ</td>
<td>240,000</td>
</tr>
<tr>
<td>きしのい</td>
<td>47,000</td>
</tr>
<tr>
<td>あおのり(素干し)</td>
<td>8,600</td>
</tr>
<tr>
<td>あまのり(焼きのり)</td>
<td>2,100</td>
</tr>
<tr>
<td>わかめ(生)</td>
<td>1,800</td>
</tr>
<tr>
<td>まだら(生)</td>
<td>350</td>
</tr>
<tr>
<td>ふり(生)</td>
<td>24</td>
</tr>
<tr>
<td>おし(生)</td>
<td>15</td>
</tr>
<tr>
<td>すしめもの(生)</td>
<td>3</td>
</tr>
<tr>
<td>まداد(ゆで)</td>
<td>8</td>
</tr>
<tr>
<td>かき(生)</td>
<td>73</td>
</tr>
<tr>
<td>あざ(生)</td>
<td>55</td>
</tr>
<tr>
<td>腸脂粉乳</td>
<td>120</td>
</tr>
<tr>
<td>調整粉乳</td>
<td>41</td>
</tr>
<tr>
<td>普通牛乳</td>
<td>16</td>
</tr>
<tr>
<td>津波(生/ゆで)</td>
<td>16/15</td>
</tr>
<tr>
<td>もめんうふ</td>
<td>5</td>
</tr>
<tr>
<td>水稲めし(精白米・玄米)</td>
<td>0</td>
</tr>
</tbody>
</table>

ヨウ素量は可食部100g当たり
2. 実験
試料前処理;
試料としては、認証標準物質の粉乳(NIST1549 Non Fat Milk Powder)を用いました。試料前処理手順は以下の通りです。

| 試料 0.5g | PFA製遠沈管に秤量 |
| ↓ | 25%TMAH 1ml + 超純水4.5ml |
| 90℃のオーブンで3時間放置、放冷 |
| 超純水で10mlに定容 |
| 3000rpmで15分間遠心分離 |
| 上澄みを超純水で5倍に希釈 |
| ICP-MS測定 |

図1 試料前処理フロー

試料とし認証標準物質の粉乳(NIST1549 Non Fat Milk Powder)を用いました。

試料前処理手順は以下の通りです。

スプレーチャンバー	石英製サイクロン形
ネプライザ	石英製同軸形
試料導入量	約0.25ml/min
RF出力	1600W

表2 ICP-MS測定条件

3. 実験結果
3-1 メモリー効果の検証
ヨウ素のICP-MS分析を酸性液性で行うと、

Γ → I2 の反応起こり、メモリー効果が大きくなります。

メモリー効果を小さくするためには液性をアルカリ性にする必要があります。アルカリ性溶液のTMAHと酸性溶液の希硝酸を用いてメモリー効果の比較を行いました。

図3に示すように、アルカリ性溶液では約30秒で初期ブランク値に戻ってい

るのに対して、酸性溶液では約7分経過後も初期ブランク値に戻りませんでした。

ヨウ素の精確な定量分析にはTMAHを用いた試料前処理と、検量線溶液、洗浄液を用いることが有効であることが分かります。

装置条件;
測定装置のICP-MSはPerkinElmer社製NexION300Sを用いました。測定条件は表2に示します。検量線標準液は、よう化カリウムを0.25%TMAHで調製しました。内標準元素としてはInを用い、装置に標準装備されているペリスタルティックポンプを用いたオンラインでの添加を行いました。

図3 ヨウ素メモリー効果の液性による違い

NexION 300
3-2 定量結果
以下に前処理を行った NIST1549 Non Fat Milk Powder に含まれるヨウ素の定量結果を示します。ヨウ素の測定には NexION300S を用いました。定量下限値 (LOQ) は定量値に対し、十分低い値が得られました。

表 3 前処理試料の定量結果

<table>
<thead>
<tr>
<th>測定元素</th>
<th>質量数</th>
<th>LOD</th>
<th>LOQ</th>
<th>NIST1549</th>
<th>濃度単位</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>127</td>
<td>0.0444</td>
<td>0.148</td>
<td>33.4</td>
<td>ug/L</td>
</tr>
</tbody>
</table>

LOD (Limit of Detection) 検出下限値は検量線ブランクの信号の 3σ に相当する濃度です。
LOQ (Limit of Quantitation) 定量下限値は検量線ブランクの信号の 10σ に相当する濃度です。

また、以下に定量値を粉末試料中濃度に換算した値を示します。保証値に対する回収率も良好な値が得られました。

表 4 NIST1549 定量値の粉末試料換算濃度

<table>
<thead>
<tr>
<th>測定元素</th>
<th>質量数</th>
<th>LOD</th>
<th>LOQ</th>
<th>定量値</th>
<th>保証値</th>
<th>回収率(%)</th>
<th>濃度単位</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>127</td>
<td>4.44</td>
<td>14.8</td>
<td>3.34</td>
<td>3.38</td>
<td>99</td>
<td>mg/kg</td>
</tr>
</tbody>
</table>

LOD および LOQ は表 3 の値を試料中濃度に換算したものです。

4. まとめ
本測定の結果から、ICP-MS NexION を用いることで食品中のヨウ素を精密に測定することができることが確認できました。定量下限値も十分低く、様々な食品中に含まれるヨウ素分析に応用できる手法であると考えられます。

参考文献
1) 第 6 次改定日本人の栄養所要量について
2) 日本食品標準成分表 2010
HPLC-ICP-MS を用いた玄米に含まれるひ素の形態別分析
As speciation analysis in brown rice using by HPLC-ICP-MS

概要
ひ素は有害元素としてよく知られています。また、ひ素は様々な化学形態をとり、その形態によって毒性が異なり、無機ひ素は毒性が高く、有機ひ素は毒性が低いことが知られています。そのため、総ひ素中に無機ひ素がどれくらいの割合で存在するのかを知ることは重要なことと言えます。

ひ素を化学形態別に測定する場合、高感度にひ素を検出できる ICP-MS を用いた HPLC-ICP-MS 法は有効な手段となります。本報では、形態分離のための HPLC として PerkinElmer 社製 Flexar を、ICP-MS として PerkinElmer 社製 NexION 300 D を用いたひ素の形態別分析の事例をご紹介します。

Keywords : ICP-MS, HPLC, 形態別分析, ひ素, 食品, 玄米

1. はじめに
ひ素は有害元素としてよく知られており、水道水質基準などでも規制がなされている元素です。規制は総ひ素濃度としてされていますが、ひ素はその化学形態により毒性が異なることが知られています。例えれば亜ひ酸やひ酸のような無機ひ素は毒性が高く、急性毒性や発がん性があることが知られています。一方で、モノメチルアルソン酸、ジメチルアルシン酸、アルセノペタイン、アルセノコリン、トリメチルアルシンオキサイドなどの有機ひ素は毒性が低いことが知られています。

そのため、FAO/WHO 合同食品添加物専門家委員会(JECFA)は 1988 年にひ素の暫定耐容週間摂取量 (PTWI) を無機ひ素として 0.015 mg/kg bw (body weight: 体重) と定めました 1) (2010 年に取り下げられ、基準値の検討を中断しています)。

ひ素の摂取源は鮮魚や食品ですが、日本においては、総ひ素摂取量/人/日のうち 53.6 %を魚介類から、35.4 %を野菜・海藻から、7.1 %を米から摂取しています 1)。米からの摂取割合は魚介類に比べて低いものの、摂取する機会も多い食品であり、含まれる総ひ素濃度の把握と共に、その形態が無機体であるのか有機体であるのかを明らかにすることは重要なことと言えます。

ひ素を形態別に測定する手法として、近年一般的になりつつあるのが HPLC-ICP-MS 法です。HPLC で形態別に分離した成分を、オンラインで ICP-MS に導入し、各成分中のひ素を検出すという手法です。ICP-MS は溶液試料中の微量金属を高感度で測定できる手法であるため、環境試料から電子材料中の不純物分析まで幅広く用いられています。溶液試料をそのまま導入して測定できるため、HPLC からの溶離液を直接 ICP-MS に導入でき、ひ素の化学形態別分析を高感度かつ簡便に行うことが可能です。
2. 実験

LC-ICP-MS システム;

測定装置として、HPLC は Flexar LC、ICP-MS は NexION 300 D を用いました。ICP-MS で元素分析を行う場合、多原子イオン干涉が問題となる場合があります。び素が測定対象元素の場合、イオン源に使用されるアルゴンと試料中に含まれる塩素およびカルシウムの多原子イオン干涉である ArCl⁺と CaCl⁺が生成します。⁷⁵As とこれらの多原子イオン干涉は同じ質量を持つため、び素の正確な分析を行うためにはこれらの多原子イオン干涉を除去することが重要です。NexION300 シリーズでは、ArCl⁺および CaCl⁺を除去するための機構としてユニバーサルセルを搭載しています。このユニバーサルセルに、反応性をもつメタンガスを流すことで多原子イオンを効果的に除去することができます。メタンガスを用いるリアクション法は、ヘリウムガスを用いるコリジョン法と比較し、感度低下を起こすことなく多原子イオン干涉を除去できるため、ICP-MS の持つ感度を生かした高感度分析を行うことができます。本実験に用いた HPLC 分離条件を表 1 に、ICP-MS 測定条件を表 2 に示します。

試料前処理および検量線;

試料は玄米 A～E の 5 検体で、試料調製機関によりび素化合物の各濃度・総び素濃度の測定が行われた後、8 機関に配布され、それぞれの機関により LC-ICP-MS 測定が実施されました。試料前処理および測定方法は、試料調製機関により指針が示され、それに準拠しました。

粉末状にした米 0.1 g に超純水 10 mL を加え、約 90 ℃で 4 時間加熱。室温に冷えた後、遠心分離を行い、試料溶液の上澄みを 0.45 μm のシリンジフィルターでろ過し検液を得ました。検量線溶液は、び酸(AsV)、亜び酸(AsIII)、モノメチルアルソン酸(MMA)、ジメチルアルシン酸(DMA)を混合して調製し、リテンションタイムの確認および定量に用いました。また、アルセノベタイン(AB)を内標準元素として検量線溶液および試料に添加し、感度変動の補正に用いました。

検量線濃度は 0.5、1、2、5、10、20、30 ppb としました。

表 1 HPLC 条件

<table>
<thead>
<tr>
<th>装置名</th>
<th>Flexar LC</th>
</tr>
</thead>
<tbody>
<tr>
<td>カラム</td>
<td>4.6 mm×250 mm、粒径 5μm</td>
</tr>
<tr>
<td>移動相</td>
<td>10 mmol/L 1-プロパンスルホン酸ナトリウム、4 mmol/L 水酸化テトラメチルアンモニウム、4 mmol/L マロン酸、0.05 %メタノール、0.03 % 硝酸</td>
</tr>
<tr>
<td>流量</td>
<td>0.8 mL/min</td>
</tr>
<tr>
<td>カラム温度</td>
<td>室温</td>
</tr>
<tr>
<td>試料導入量</td>
<td>10 μL</td>
</tr>
</tbody>
</table>

表 2 ICP-MS 測定条件

<table>
<thead>
<tr>
<th>装置名</th>
<th>NexION 300 D</th>
</tr>
</thead>
<tbody>
<tr>
<td>RF 出力</td>
<td>1600 W</td>
</tr>
<tr>
<td>測定対象元素</td>
<td>m/z 75 As</td>
</tr>
<tr>
<td>干渉除去条件</td>
<td>メタンガス 0.3 ml/min</td>
</tr>
</tbody>
</table>
3. 測定結果
検量線溶液および未知試料の測定で得られたクロマトグラムは成分ごとに面積を積分し、内標準強度および前処理における水分損失分を補正し、定量値を得ました。試料測定およびデータ処理には専用ソフトウェアであるChromeraを用いました。
得られた検量線は、測定対象の4成分とも相関係数0.999以上の良好な直線性を示しました。測定試料のうち玄米AおよびCのクロマトグラムを図1に示します。それぞれ、亜鉛酸(AsV)、亜鉛酸(AsIII)、ジメチルアルシン酸(DMA)が検出されました(アルセノベタイン・ABは内標)。表1、2に示した条件を用い、内標準を含む5成分の測定にかかった時間は1検体あたり7分でした。

図1 試料A(左)および試料C(右)のクロマトグラム

表3に玄米試料5検体の定量値(mg-As/kg)および検出下限値(LOD)、定量下限値(LOQ)を示します。LODおよびLOQは、それぞれS/N×3およびS/N×10で定義し、定量値の1/10以下という十分低い濃度が得られました。

表3 玄米試料の形態別定量測定結果

<table>
<thead>
<tr>
<th></th>
<th>LOD</th>
<th>LOQ</th>
<th>試料A</th>
<th>試料B</th>
<th>試料C</th>
<th>試料D</th>
<th>試料E</th>
</tr>
</thead>
<tbody>
<tr>
<td>As(V)</td>
<td>0.00013</td>
<td>0.00044</td>
<td>0.021</td>
<td>0.043</td>
<td>0.044</td>
<td>0.040</td>
<td>0.053</td>
</tr>
<tr>
<td>As(III)</td>
<td>0.00012</td>
<td>0.00039</td>
<td>0.070</td>
<td>0.13</td>
<td>0.13</td>
<td>0.15</td>
<td>0.18</td>
</tr>
<tr>
<td>MAA</td>
<td>0.00014</td>
<td>0.00046</td>
<td>-</td>
<td>-</td>
<td>0.0013</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>DMAA</td>
<td>0.00022</td>
<td>0.00072</td>
<td>0.0063</td>
<td>0.017</td>
<td>0.020</td>
<td>0.030</td>
<td>0.026</td>
</tr>
</tbody>
</table>

濃度単位：mg-As/kg、-：未検出
また、下記 図2に8機関による試料測定平均値、本測定における定量値を示します。総び素濃度は試料測定値の合計で、設定濃度も合わせて示します。設定濃度は、硝酸と過酸化水素によりマイクロウェーブ分解して得た溶液を外部検量線法で定量したものでN=5、試料調製機関による測定。

本測定における各化合物の定量値は、8機関による試料測定平均値のばらつきの範囲内に入り、総び素濃度は設定値とよく一致しました。

図2 As(V)(左上)、As(III)(右上)、DMAA(左下)定量値および総び素(右下)濃度

▲: 8機関の試料測定平均値 ○: 本測定による定量値 ◇: 設定濃度
4. まとめ
本測定の結果、ひ素化合物は HPLC により良好に分離され、ICP-MS で感度よく測定を行うことができました。本実験の定量値は他の機関との相関も取れ、設定値とも一致した良好な結果となりました。この結果から、Flexar-NexION システムは玄米に含まれるひ素の形態別分析に適しているということが言えます。

参考文献
1) Evaluation of certain contamination in Food, 72 report of the Joint FAO/WHO Expert Committee on Food Additing
2) 平成 20 年度 食品中に含まれるヒ素の食品影響評価に関する調査 報告書、財団法人国際医学情報センター
3) Determination of Arsenic Speciation in Apple Juice by HPLC/ICP-MS, Ken Neubauer et.al., PerkinElmer Application Note
Introduction
ファーネス原子吸光分析法（GFAAS）は、単純かつ高感度で測定できる手法として、マトリックスに関わらず、微量金属の定量に広く採用されています。
一般に、食用油中に含まれている金属元素は微量です。砒素（As）、鉛（Pb）、カドミウム（Cd）、クロム（Cr）及びセレン（Se）のような金属には毒性があり、消費者の健康に影響を及ぼすことが知られています。油中の有害金属の汚染源は、自然界由来のものや生産時ものがあります。これらは、GFAAS または誘導結合プラズマ質量分析法（ICP-MS）を用いて定量でき、測定する元素数が少ない場合は GFAAS が適しています。また、GFAAS は、ICP-MS よりもセッティングが簡単なだけでなく、特別なトレーニングを必要としません。
GFAAS は設備投資における初期コストが低く、ランニングコストも抑えることができます。食品サンプル、特に油は、有機物質を除くために、機器分析の前に前処理を必要とします。前処理をする場合、湿式もしくは乾燥灰化、マイクロ波前処理装置を用いた分解、または有機溶剤による抽出などがあります。これらの前処理は時間がかかるばかりでなく、多くのトレーニングを必要とすることもあります。
ここでは、食用油を前処理することなく、直接測定する手法を検討した結果を紹介します。この手法の長所は、使用する試料量が少なく、サンプルの直接の導入、高感度測定、そして、分析時間の短縮です。測定対象は、As、Pb、Cd の 3 元素で、検出下限値、QC チェックおよび回収率が、早くかつ、精確に測定できるよう灰化、原子化温度の最適化をしました。
Experimental Conditions

Instrumentation

測定には、パーキンエルマー社製の原子吸光分析装置 PinAAcle 900T を使用しました。AS900 オートサンプラーを装備し、WinLab 32 ソフトウェアから装置を制御します。（Microsoft® Windows™ 7 上で起動。）

Figure 1. PerkinElmer PinAAcle 900T atomic absorption spectrophotometer equipped with AS 900 graphite furnace autosampler.

PinAAcle 900T は、高効率な真のダブルビーム光学システムと、優れた SN 比を提供する半導体検出器を搭載しています。ファーネス法のバックグラウンド補正は、平行磁場型のゼーマン分裂補正方法を採用しており、この装置の特長のひとつです。光路内に偏光子を必要としませんので、光のスループットが効率よくなります。

また、チューブの横方向から加熱する十字型のグラファイトチューブ（THGA）は、グラファイトチューブの長さ全体に対して、均一な温度分布を提供します。Stabilized Temperature Platform Furnace™（STPF）の概念を活かした技術は、化学干渉の影響を最小限に抑え、簡単な検量線法で測定が進みます。

装置条件を Table 1 に、ファーネス条件を Table 2 に示します。試料注入時のグラファイトチューブの温度は 90℃ に設定します。分析には普通のグラファイトチューブ（エンドキャップのないもの）を使用しました。オートサンプラーのサンプルカップは、20vol% の硝酸溶液（20vol%）に一晩浸漬し、超純水で洗浄したものを使用しました。未知試料の分析には、原点を含めた 5 点の標準液を、イソプロピルアルコール（IPA）で希釈して調製しました。

Table 1. Analytical conditions for analyzing several toxic metals in edible oils on the PinAAcle 900T.

<table>
<thead>
<tr>
<th>Analyte</th>
<th>As</th>
<th>Pb</th>
<th>Cd</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wavelength (nm)</td>
<td>193.70</td>
<td>283.31</td>
<td>228.80</td>
</tr>
<tr>
<td>Slit Width (nm)</td>
<td>0.7</td>
<td>0.7</td>
<td>0.7</td>
</tr>
<tr>
<td>Lamp Type</td>
<td>EDL</td>
<td>EDL</td>
<td>HCL</td>
</tr>
<tr>
<td>Signal Processing</td>
<td>Peak Area</td>
<td>Peak Area</td>
<td>Peak Area</td>
</tr>
<tr>
<td>Read Time (sec)</td>
<td>3</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>Standard/Sample Volume (μL)</td>
<td>20</td>
<td>20</td>
<td>20</td>
</tr>
<tr>
<td>Diluent Volume (μL)</td>
<td>4</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>Matrix Modifier</td>
<td>5 μg Pd + 0.5 μg Mg</td>
<td>5 μg Pd + 0.5 μg Mg</td>
<td>5 μg Pd + 0.5 μg Mg</td>
</tr>
<tr>
<td>Matrix Modifier Volume (μL)</td>
<td>5</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>Injection Temp (℃)</td>
<td>90</td>
<td>90</td>
<td>90</td>
</tr>
<tr>
<td>Pipet Speed (%)</td>
<td>40</td>
<td>40</td>
<td>40</td>
</tr>
<tr>
<td>Calibration Equation</td>
<td>Linear Through Zero</td>
<td>Linear Through Zero</td>
<td>Linear Through Zero</td>
</tr>
<tr>
<td>Standard Concentration (μg/L)</td>
<td>0, 20, 30, 40, 50</td>
<td>0, 20, 30, 40, 50</td>
<td>0, 0.5, 1.0, 1.5, 2.0</td>
</tr>
<tr>
<td>QC Concentration (μg/L)</td>
<td>10</td>
<td>10</td>
<td>0.4</td>
</tr>
<tr>
<td>Automatic Spike Conc. (μg/L)</td>
<td>10</td>
<td>10</td>
<td>0.5</td>
</tr>
</tbody>
</table>
Standards and Sample Preparation
パーキンエルマー社製の単元素標準原液（As、Pb、Cd）を使用して、標準液と QC チェック用の標準液を調製しました。全ての標準液は IPA（VWR、Normapur Reagent grade）を用いて、体積比で調製しました。
化学修飾剤は、Pd（1000mg/L）と Mg（100mg/L）の混合溶液を3元素すべてに使用しました。この修飾剤はビス(2,4-ペンタンジオナト)パラジウム(II)（Aldrich、99%、MW=304.62）を0.1430gとMgオイル標準液（Conostan、5000μg/mL）を1mL分取し、キシレン（Panreac、reagent grade）で50mLに定容して調製しました。
測定用のサンプルは、市販の5つの食用油（ヤシ油、ゴマ油、ヒマワリ油、大豆油、ぬか油）を購入しました。全てのサンプルは、ポリプロピレン製の容器を用いて、IPAで20倍に希弾しました。

Results and Discussion
検量線の相関係数は、0.997以上を確保できました。油の分析において検量線法での測定は、標準添加法やマトリックスマッチングをした測定法よりも、オペレーターのエラーの低減を図ることができるといくつかの利点があります。標準液（赤）、QCサンプル（緑）、油サンプル（各色）のピークプロファイルをFigure 3に示します。ピークの出現する時間を若干の差が見られるが、ピーク面積で計算をすれば精度な定量値が得られます。

Table 3に、測定結果を示します。全ての油において、CdとPbは、検出下限値よりも低い値となりました。大豆油は、Asが4.28μg/L含まれていましたが、それ以外は検出下限値以下でした。
方法検出下限値（MDLs）は、ブランク溶液（IPA）を7回（CdおよびAs）、もしくは5回（Pb）測定した時の標準偏差を3倍して算出しました。サンプルは20倍に希釈していますので、その数値を20倍して、サンプルの単位に換算しました。Table 4 は、難しいとされている油のサンプルを分析する際でも、PinAAcle 900T 原子吸光分析装置では低い濃度のMDLsを示しています。

この方法の最終目標は、サンプルの前処理を実施しなくても、食用油中の有害金属を直接定量するメソッドを開発することでした。検討した方法の有意性は、QC サンプルの回収率にて確認されました。Table 5 に示したように、QC サンプルの回収率は98〜110%（許容範囲内）が得られました。さらに、As と Pb には10μg/L、Cd には0.5μg/L の標準液を添加して添加回収率を求めたところ、93〜112%の範囲内となり、±15%以内というガイドラインを満たしました。
Conclusions

サンプルを直接注入して、食用油中の有害金属を定量する手法を開発しました。

THGA チュープのデザインは、時間のかかるサンプルの前処理を減らし、精確さと分析スループットを改善します。

独特の光学デザイン、半導体検出器、THGA、STPF テクニック、平行磁場型ゼーマンバックグラウンド補正のすべてが、PinAAcle 900T 分光計の能力を引き出し、食用油のような難しいマトリックスサンプルにおいても精確で、迅速に、再現性の良い結果を提供します。PinAAcle 900Z 原子吸光分析装置（ファーネス専用機）も、このアプリケーションに適した装置です。

本レポートは以下を日本語訳したもので。
BTEX類によるオリーブオイルの汚染

The determination of low levels of benzene, toluene, ethylbenzene, xylene and styrene in olive oil using a Turbomatrix HS and a Clarus SQ 8 GC/MS.

結言
ペンゼン(benzene, 以下 Bz とする), トルエン(toluene, 以下 Tl とする), エチルベンゼン(ethylbenzene, 以下 EB とする), キシレン(xylene, p-、m-、o- 計3種の異性体が存在, 以下 pX、mX、oX とする, ステレン(styrene, 以下 St とする)などの物質は、それぞれの化学名をとって BTEX 類と呼ばれる。BTEX 類は自動車やオーブンレンジなどの産業環境から、また大豆油やオーブンオイルに BTEX 類が混入するおそれがある。このような観点からオーブンオイルに含まれる BTEX 類の濃度を測定するニーズがある。

今回は PerkinElmer 製ガスクロマトグラフ質量分析計 Clarus SQ 8 GC/MS と使いこなして BTEX 類を 0.5 ng/g まで検出できる手法を開発したので紹介する。

使用装置と分析条件

<table>
<thead>
<tr>
<th>品名</th>
<th>型式</th>
<th>試験条件</th>
</tr>
</thead>
<tbody>
<tr>
<td>ガスクロマトグラフ</td>
<td>Turbomatrix HS</td>
<td>定温: 35 〜 230℃</td>
</tr>
<tr>
<td>質量分析計</td>
<td>Clarus SQ 8 GC/MS</td>
<td>質量数: 33 〜 300 (electron)</td>
</tr>
<tr>
<td>トロンプヒット</td>
<td>8,000 volts</td>
<td>入力電圧: 8,000 volts</td>
</tr>
<tr>
<td>ガスクロマトグラフの検出器</td>
<td>FID</td>
<td>検出器電圧: 400 V</td>
</tr>
</tbody>
</table>

分析方法

<table>
<thead>
<tr>
<th>試験方法</th>
<th>試験条件</th>
</tr>
</thead>
<tbody>
<tr>
<td>標準試験</td>
<td>保存試料標準溶液 BTEX 類各 1 ml を溶液フラスコに添加し、50 ml の水で静かに振とうし、5 分間放置後、分液漏斗でそれぞれ一定量 (実験条件は表 2 を参照)</td>
</tr>
<tr>
<td>標準試験</td>
<td>保存試料標準溶液 BTEX 類をガスクロマトグラフで 100 ng に希釈した溶液 (各成分の濃度は表 5 を参照)</td>
</tr>
<tr>
<td>ビタミン添加標準試料-HS 分析用 22 ml バイアルへ標準試料と BTEX 類希釈溶液を添加してオーブンオイルの使用量、各成分の濃度を表 8 を参照</td>
<td></td>
</tr>
</tbody>
</table>

結果

マトリックスの影響

| 標準試料 (2 ml をバイアルへ添加)と BTEX-3 のクロマトグラムを図 1, 図 2 に示した。これらは、マトリックスによりピーク強度が減少すること、新たなピークが生じることを確認をすることができた。それらのデータは、Scan、SIM や定性分析を含む GCM モード（図 4 に示す）で取得した。

検出下限価

| 低濃度 (0.8 〜 5.9 ng/g) の BTEX 類を含むサンプルのクロマトグラムで SN 上下限を求め、その値から SN 比をもとに濃度を算出した結果を表 8 に示した。いずれの成分も 0.5ng/g 以下の検出下限値を得られた。

検出下限値 (OPE-0)

| n で 10 で試験して得られた RSD を表 9 に示した。RSD は 1.69 〜 3.76 であり、検出下限値が良好であることを確認できた。

未検出試料の定量結果

| 産地の異なる市販のオーブンオイル7種について定量した結果を表 10 に示した。

まとめ

BTEX 試料はオイルが残存し、明確な基準にしたがって検証されるため、ヘッドスペース法で低濃度まで検出するのは困難である。したがって、より向上した PerkinElmer 製ガスクロマトグラフ質量分析計 Clarus SQ 8 GC/MS を用いることで、検出感度を満たす基準的なヘッドスペースサンプラーやとの組み合わせで 0.5ng/g まで分析することができた。

注

- BTEX 類はオイルが残存し、明確な基準にしたがって検証されるため、ヘッドスペース法で低濃度まで検出するのは困難である。したがって、より向上した PerkinElmer 製ガスクロマトグラフ質量分析計 Clarus SQ 8 GC/MS を用いることで、検出感度を満たす基準的なヘッドスペースサンプラーやとの組み合わせで 0.5ng/g まで分析することができた。

www.perkinelmer.co.jp
1.はじめに
食用油のうち、オリーブオイルは他とは異なる品質（味、匂い）を有し、栄養価が高いことが知られています。また抗酸化物質（ビタミン Eなど）を多く含むことからオリーブオイルの価値が高騰しています。早くから地中海地方では、LDLコレステロールを下げる作用や抗炎症作用など、健康に良いとされる効果が認められていました。しかしオリーブオイルは植物オイルやシードオイルに比べ、比較的生産力が低く、高価格の点から世界で食品偽装の多い製品の一つです。

オリーブオイルやほかのオイルは主にトリオイルグリセロールから構成されており、これはグリセロールと3つの脂肪酸がエステル結合したものです。これらの脂肪酸はオイルの脂肪酸組成を決定しますが、オリーブオイルは他の植物オイルやシードオイルに比べ、多くのオレイン酸（oleic acid）を含み、リノール酸（linoleic acid）とリノレン酸（linolenic acid）は少ない割合しか含まれていません。オレイン酸は一価不飽和脂肪酸であり、リノール酸とリノレン酸は多価不飽和脂肪酸です。オリーブオイルの中の脂肪酸比率は、オレイン酸：65-85%、リノール酸：4-15%、パルミチン酸（palmitic acid）：7-16%、リノレン酸：0-1.5%となっています。一方、大豆オイルの脂肪酸は、オレイン酸：19-30%、リノール酸：48-58%、パルミチン酸：7-12%、リノレン酸：0-1.0%です。したがって、オリーブオイル中のオレイン酸に対するリノール酸とリノレン酸の比率を測定することは、オリーブオイルに比べてリノール酸、リノレン酸を多く含むオレイン酸をあまり含まない大豆オイルやほかのコーン、サフラワー、サンフラワー、ササコイなどの植物オイルが添加されたオリーブオイルの検出方法として使用できると考えられます。そこで、AxION Direct Sample Analysis Time of Flight mass spectrometryシステム（DSA/TOF）を使い、大豆オイルが添加されたオリーブオイルの測定を試みました。
オリーブオイルに比べ低価格で栄養価も低い植物性オイルやシードオイルは偽装などの様々な問題が起こっています。このためほかのオイルが添加されたオリーブオイルの分析のために迅速性、信頼性、対費用を考慮しながら多くの科学的な試みがなされており、これまで、GC/MS や HPLC/MS を使用した分析が行われてきました

7,8,9,10). しかしこれらの方法では、時間と経費を要し、様々な試料の前処理や誘導体化なども必要でした。そこでここでは、AxION 2 DSA/TOF を使用し、大豆オイルを添加したオリーブオイルの迅速なスクリーニングを行いました。この方法は、従来の方法とは異なり、クロマトグラフィーを必要とせず、試料の前処理なしでオリーブオイルを直接測定することができ、さらに数秒で結果を得ることができました。

2. 実験方法

オリーブオイルと大豆オイルは市販品を使用しました。これらのオイルは 10mM の酢酸アンモニウムを含むイソプロパノールで 1%に希釈しました。希釈後、大豆オイル混合オリーブオイルを作成するため、5、10、25、50パーセントの割合で大豆オイルを添加しました。それぞれのオイルと混合物は AxION 2 DSA/TOF システムにより測定し、試料は AxION DSA システムのステンレスメッシュ（図 1）に直接 5µL スポットしました。測定条件は以下の通りです。

- コロナ電流: 5µA
- ヒーター温度: 350℃
- イオン化: ネガティブモード
- フライト電圧: 8000V
- キャピラリー電圧: -120V
- 測定範囲: 100-700 m/z (5spectra/s)
- 測定時間: 30秒以下

それぞれの測定前に DSA イオン源にインフュージョン（10µL/min）で標準物質を導入し、キャリプレーションを行いました。

図 1. DSA/TOF システムのステンレスメッシュトレー

3. 結果

図 2 と 3 は DSA/TOF を用いてイソプロパノール（10mM 酢酸アンモニウムを含む）で 1%に希釈したオリーブオイルと大豆オイルのマススペクトルを示しています。どちらのオイルにも脂肪酸であるオレイン酸、リノール酸、リノレン酸が検出されましたが、それぞれの強度比は全く異なっていました。リノール酸とオレイン酸の割合 (L/O) はオリーブオイルで 0.18、大豆オイルで 1.86でした。またリノレン酸とオレイン酸の割合 (Ln/O) はオリーブオイルで 0.017、大豆オイルで 0.29となりました。したがってオレイン酸に対するリノール酸とリノレン酸の割合で大豆オイルがオリーブオイルに混合されているかどうかを検出することが可能であると考えられます。図 4 はオリーブオイルに大豆オイルを 10%の割合で混ぜた時のマススペクトルを示していますが、オリーブオイルに比べ、オレイン酸に対するリノール酸とリノレン酸の割合は約 2 倍の値となりました。図 5 と 6 はオリーブオイルに 5 から 50%の割合で大豆オイルを混合した時のオレイン酸に対するリノール酸とリノレン酸の割合をグラフにしたものですが、大豆オイルの割合が多くなるほど、L/O および Ln/O の値が大きくなることがわかります。これは DSA/TOF を用いてオレイン酸に対するリノール酸、リノレン酸の比率を測定することで、オリーブオイルに大豆オイルが混入しているかどうかを検出することができることを示しています。すべての測定値は、精度よく、質量誤差は 5ppm 以下でした。
図 2. DSA/TOF を用いてネガティブモードで測定したオリーブオイル（100 倍希釈）のマススペクトル

図 3. DSA/TOF を用いてネガティブモードで測定した大豆オイル（100 倍希釈）のマススペクトル

図 4. オリーブオイルに大豆オイル 10%を加えた時のマススペクトル（100 倍希釈、ネガティブモード、DSA/TOF 使用）
4. 結論

DSA/TOF を用いて大豆オイルが添加されたオリー
ブオイルの迅速スクリーニングを行うことができました。オリー
ブオイル中のオレイン酸に対するリノール酸とリ
ノレン酸の比率が高いほど大豆オイルが混入してい
る割合が高いこともわかりました。結果として得られた
測定値は、外部標準法で質量誤差 5ppm 以下でした。
さらに前処理は希釈のみで、1 試料につき、30 秒以
内で測定を終了することができました。LC/MS や、
GC/MS などほかの測定方法に比べ、生産性を上げ、
コストの削減と時間の短縮ができることが示唆されま
した。

References
1. Garcia-Gonzalez L. D., Aparicio-Ruiz R., Aparicio R.,
Virgin olive oil-chemical implications on quality and
2. Sotiroudis T. G., Kyriopoulos A. S., Anticarcinogenic
compounds of olive oil and related biomarkers, Eur. J.
Han Q., Lee Chi-Ho, Smith B.A., Breslin S.A.,
Phytochemistry: Ibuprofen-like activity in extra-virgin
5. Jakab A., Heberger K., Esther Forgacs, Comparative
analysis of different plant oils by high-performance liquid
chromatography-atmospheric ionization mass
6. Fasciotti M., Annibal D.P.N., Optimization and
application of methods of triacylglycerol evaluation for
characterization of olive oil adulteration by soybean oil
with HPLC-APCI-MS-MS, Talanta, 2010, 81, 1116-1125.
7. Salivaras E., McCurdy R.A., Detection of olive oil
adulteration with canola oil from triacylglycerol analysis
by reversed-phase high-performance liquid
chromatography, JAOCs, 1992, 69, 935-938.
8. Gromadzka J., Wardencki W., Trends in edible vegetables
oils analysis. Part B. Application of different analytical
9. And rikopoulos K.N., Giannakis G.I., Tzamits V.,
Analysis of olive oil and seed oil triglycerides by capillary
gas chromatography as a tool for the detection of the
adulteration of olive oil, J. Chrom. Sci., 2001, 39,
137-145.
10. Ezzatpanah H., Ghavami M., Ahasemi B.J., Vanak P.Z.,
Detection and quantification of adulteration in olive oils
by global method and extinction coefficient, Australian
ものを用いたツナ缶のエポキシフェノールからなるコーティング剤 BADGE の定量

Quantitation of BADGE: An Epoxyphenol-based Food Can Coating in Canned Tuna Extracts Using UHPLC-TOF

1. はじめに
食品用の金属の缶は通常食品と缶の接触を避けるために樹脂コーティングされていますが、これらのコーティング剤は食品に浸潤し食品の安全性と品質に影響を与えます。缶の内側にコーティングされているビスフェノール A 型エポキシ樹脂からなるポリエポキシフェノールは、エポキシモノマーであるビスフェノール A ジグリセリン二エーテル (bisphenol A diglycidyl ether: BADGE) を食品中に浸漬させます1,2)。ビスフェノール A とその誘導体は内分泌障害物質として考えられており3), ヨーロッパとアメリカは BADGE が食品に浸潤する規制値は 1mg/Kg までと制限しています。そこで AxION 2 Time-of-Flight (TOF) mass spectrometer の定量性を使用し、ツナ抽出液中の BADGE の検量線作成と定量を行いましたので報告します。さらに、独自の AxION EC ID ソフトウェアと TOF の高い質量精度により標準品を使用せずに未知の不純物である cyclo-di-BADGE の同定を行いました。

2. 実験方法
1) 試料の前処理
10g のツナを 50mL のサンプルチューブに移し、BADGE の標準品(2000ng)を添加しました。これにアセトニトリル 10mL を加え攪拌し、さらに NaCl 1g、硫酸マグネシウム 4g、クエン酸三ナトリウム 1g、クエン酸二水素ナトリウム 0.5g を加え攪拌し、3,700rpm で 5 分遠心しました。上清 (1mL) を PSA 25mg、硫酸マグネシウム 150mg、C18 25mg が含有された SPE サブミクロ遠心チューブに入れ、ボルテックス後、3,000rpm で 5 分遠心しました。上清を取り除き、5% ギ酸 5µL を加えて pH を調整し分析に使用しました。
2) LC 条件
ポンプ: PerkinElmer Flexar FX-15 pump
流速: 0.4mL/min
移動相 A: 0.1%ジ酸水
移動相 B: 0.1%ジ酸アセトニトリル
グラジエント: 70%A/30%B→10%A/90%B
(5分: リニアグラジエント)
注入量: 5µL (パーシャルループモード)
カラム: PerkinElmer Brownlee SPP C-18
2x250mm 2.7µm、25℃

3) MS 条件
質量分析装置: PerkinElmer AxION 2 TOF MS
イオン源: PerkinElmer Ultraspray 2
(Dual ESI source)
イオン化モード: ポジティブ
質量範囲: 90-700 m/z
キャピラリー電圧: 100V
内部標準物質: m/z 118.08625、m/z 622.02896

3. 結果
BADGE は [M+NH4]+ として観察されました。マススペクトルを図 1 に示します。BADGE の標準品では 2ppb という低い濃度でも検出することができました (S/N=52)。また 2から 500 ng/mL の範囲で BADGE 標準品の検量線を作成し、良好な直線 (r²=0.995) が得られました (図 2)。2ppb の濃度で 3 回注入した RSD は 10%以下でした。200ng/mL の BADGE 標準品を添加したツナ抽出液の UHPLC-TOF の結果を図 3 に示します。ツナ抽出物に添加した BADGE は 94%の回収率で検出され、イオンサプレッションが起こっていないことが示唆されました。

高い質量精度を有する AxION 2 TOF を用いて、2.5から 3 分に溶出する同じ質量の 2つの未知物質の同定を行いました (図 4)。AxION EC ID ソフトウェアを用いて精密質量と同位体分布の情報を PubChem データベースの検索を行い、可能性のある組成式を検討しました。可能性の高い化合物として挙げられたのは C₃₆H₄₀O₆ という組成で、質量誤差は 1ppm 以下でした (図 5)。また得られた組成式から可能性のある構造式をリストアップしたところ、ビスフェノール系に関係していると考えられる BADGE.BPA 直線構造のものでした (図 6a)。しかし、文献では異性体の cyclo-di-BADGE の可能性が示唆されています (図 6b)。フラグメントパターンとリテンションタイムを標準品と比較することでこの構造のどちらか linear であるか cyclo であるかをさらに確認できると考えられます。
4. 結論
高感度のAxION TOFを使用し、ツナ抽出液中のBADGEを規制の値である1mg/Kgをかなり下回り、0.2mg/Kgで検出することができました。AxION 2 TOFの質量精度の高さとAxION EC ID ソフトウェアにより標準品を使用することなく未知物質BADGE.BPAのlinearおよびcyclo-di-BADGEを同定することができました。

図5. AxION EC ID ソフトウェアにより得られた未知物質m/z 586.3164の組成式C₃₆H₄₀O₆

References

本レポートは以下を日本語訳したもので。

図6. 組成C₃₆H₄₀O₆の構造式
a. Linear BADGE.BPA
b. Cyclo-di-BADGE
DSA/TOFを使用したアップルジュース混合のザクロジュースの迅速スクリーニング

Rapid Screening of Adulteration in Pomegranate Juice with Apple Juice
Using DSA/TOF with Minimal Sample Preparation

1.はじめに

ザクロジュースは健康に良いとされており、需要が多くなっています。ザクロジュースはほかのグレープ、オレンジ、アップルジュースのようなフルーツジュースに比べ優れた抗酸化作用を持つことが科学的に証明されています1)2)3)。これらの優れた作用により10年間人気が上昇し続けています。その結果、他のジュース、特にアップル、オレンジ、グレープジュースに比べ高価になり、ザクロジュース偽装の誘因となっています4)。また、ザクロジュースの偽装の他に原因として、価格を下げてほしいとの要求、価格の低いジュースをブレンドしコストを下げてマージンを高めること、などが挙げられます。さらに需要が多く供給が追い付かないことから、安いジュースを添加して供給するためとも言われています。

ザクロジュースの偽装は安価な材料を使用して行われています。その材料の一つはアップルジュースのようなフィラーフルーツジュースと呼ばれるもので、アップルジュースをブレンドしても糖の含有量に顕著な変化がないことからよく使用されています。

ザクロジュースの信頼性試験の基準として有機酸分析があり、有機酸の1つ、リンゴ酸が注目されています。従ってザクロジュースとアップルジュースの両方に含まれていますが、アップルジュース中のリンゴ酸含量は4.5g/Lで、ザクロジュースの0.57g/Lよりもかなり含まれています5)6)。従ってアップルジュースがブレンドされたザクロジュースを分析する場合、ジュース中のリンゴ酸量を測定することで見分けられる可能性があります。現在、ジュース中の有機酸分析を行う場合の測定方法は、液体クロマトグラフィー（逆相またはイオン交換）とUV検出器7)または質量分析装置8)9)を組み合わせたものです。これらの測定方法は経費と時間を要し、さらにメソッド作成や試料の前処理を行う必要があります。そこで、AxION 2

Time-of-Flight mass spectrometerにAxION Direct Sample Analysis（DSA）システムを接続し、非常に簡単な前処理でアップルジュースがブレンドされたザクロジュースの迅速分析を行いました。
2. 実験方法
ザクロジュースとアップルジュースは市販品を使用しました。これらのジュースは水で200倍に希釈し、内部標準物質としてリンゴ酸-d3を0.005g/Lとなるように添加しました。アップルジュースがブレンドされたザクロジュースを作成するために、アップルジュースを5、10、20、30、50%となるようにザクロジュースに添加しました。ザクロジュース、アップルジュースとそれらのブレンドジュース中のリンゴ酸の量を比較するためにリンゴ酸-d3を加えました。試料は10μLを直接DSAシステムのステンレスメッシュ(図1)にのせ、位置調整を行いました。

DSA/TOFのパラメータは以下の通りです。

<table>
<thead>
<tr>
<th>パラメータ</th>
<th>値</th>
</tr>
</thead>
<tbody>
<tr>
<td>コロナ電流</td>
<td>5μA</td>
</tr>
<tr>
<td>ヒーター温度</td>
<td>300℃</td>
</tr>
<tr>
<td>オグジュアリガス(N2)圧</td>
<td>80psi</td>
</tr>
<tr>
<td>乾燥ガス(N2)</td>
<td>3L/min, 25℃</td>
</tr>
<tr>
<td>測定モード</td>
<td>ネガティブ</td>
</tr>
<tr>
<td>フライト電圧</td>
<td>8000V</td>
</tr>
<tr>
<td>キャピラリー電圧</td>
<td>-80V</td>
</tr>
<tr>
<td>測定質量範囲</td>
<td>50-700 m/z</td>
</tr>
<tr>
<td>取り込み速度</td>
<td>5 spectra/s</td>
</tr>
<tr>
<td>測定時間</td>
<td>15秒</td>
</tr>
</tbody>
</table>

それぞれの測定前にインフュージョンでキャリプレーション物質を導入し(10μL/min)、質量校正を行いました。

3. 結果
内部標準物質(リンゴ酸-d3)を添加したザクロジュースとアップルジュースおよびブレンドジュースは直接DSAシステムで測定を行い、前処理は希釈のみ行いました。図2と図3は、200倍希釈したザクロジュースとアップルジュースに内部標準物質を0.005g/Lとなるように加えたときのマススペクトルです。

ザクロジュースとアップルジュース中のリンゴ酸とリンゴ酸-d3の比率はザクロジュースで0.575、アップルジュースで3.453でした。この分析においては、リンゴ酸と同じ構造であるリンゴ酸-d3を内部標準物質として使用しています。従って、リンゴ酸と内部標準物質であるリンゴ酸-d3は同じイオン化効率であると仮定できます。イオン化効率を用いて計算すると、ザクロジュース中のリンゴ酸は0.575g/L、アップルジュース中のリンゴ酸は3.453g/Lと算得できます。相対標準偏差は(2%)、使用しない場合は20%でした。この結果はDSA/TOFを用いた場合、内部標準物質を使用することで測定精度が高まることがわかりました。図2はDSA/TOFを用いて測定したザクロジュースとアップルジュース中のリンゴ酸と、文献で報告されている値を比較したものですが、非常に近い値となっています。図4はザクロジュースにアップルジュースを加えたときにリンゴ酸の量を示していますが、添加したアップルジュースが多くなるほど、リンゴ酸の濃度も直線的に増加し、相関係数は0.9997でした。アップルジュースを5%以上ザクロジュースに加えた場合を測定していますが、表2は様々な濃度のアップルジュースをザクロジュースに加えた時のリンゴ酸濃度の予測値と実測値を示しています。予測値と実測値は非常に近い値を示していることがわかります。

図1. DSAシステムのステンレスメッシュ

図2. 内部標準物質(0.005g/L)を加えたザクロジュースのマススペクトル(200倍希釈)
図3. 内部標準物質（0.005g/L）を加えたアップルジュースのマススペクトル（200倍希釈）

表1. ザクロジュースとアップルジュース中のリンゴ酸量（文献値と実測値の比較）

<table>
<thead>
<tr>
<th>ジュースの種類</th>
<th>文献でのリンゴ酸量</th>
<th>DSA/TOFで測定したリンゴ酸量</th>
</tr>
</thead>
<tbody>
<tr>
<td>ザクロジュース</td>
<td>0.53 g/L</td>
<td>0.575 g/L</td>
</tr>
<tr>
<td>アップルジュース</td>
<td>4.5 g/L</td>
<td>3.453 g/L</td>
</tr>
</tbody>
</table>

図4. ザクロジュースにアップルジュースを加えた時のリンゴ酸濃度

表2. ザクロジュースにアップルジュースを加えた時のリンゴ酸濃度の予測値と実測値

<table>
<thead>
<tr>
<th>ザクロジュース中のアップルジュースの割合（％）</th>
<th>リンゴ酸の予測値</th>
<th>リンゴ酸の実測値</th>
<th>RSD</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>0.719 g/L</td>
<td>0.711 g/L</td>
<td>1.45%</td>
</tr>
<tr>
<td>10</td>
<td>0.863 g/L</td>
<td>0.865 g/L</td>
<td>2.12%</td>
</tr>
<tr>
<td>20</td>
<td>1.151 g/L</td>
<td>1.110 g/L</td>
<td>0.99%</td>
</tr>
<tr>
<td>30</td>
<td>1.438 g/L</td>
<td>1.408 g/L</td>
<td>1.80%</td>
</tr>
<tr>
<td>50</td>
<td>2.013 g/L</td>
<td>2.008 g/L</td>
<td>1.69%</td>
</tr>
</tbody>
</table>

4. 結論

今回、DSA/TOFを用いて、ザクロジュースにアップルジュースを加えた時のリンゴ酸量を測定しました。その結果、ザクロジュースにアップルジュースを加えるとリンゴ酸量は直線的に増加することがわかりました。定量する物質のd-体を内部標準物質として使用することで、試料の前処理やイオン化効率のばらつきを抑え、定量精度が上がります。今回の実験では、内部標準物質を使用した場合、使用しない場合と比べて相対標準偏差は10倍改善されました。DSA/TOFを用いて内部標準物質を使用した時の平均相対標準偏差は2%以下でした。また今回、外部標準法で質量校正を行いましたが、質量精度は5ppm以下でした。試料の前処理は希釈のみで測定は15秒で終了しました。LC/MSやLC/UV測定と比較し、経費の削減、時間の短縮が可能であることが明らかになりました。
References

本レポートは以下を日本語訳したものです。
Pharmaceutical & Nutraceutical
フレーム原子吸光法によるマルチミネラル／マルチビタミンタブレット中の元素分析
The Determination of Minerals and Metals in Multi-Mineral/Multi-Vitamin Tablets by Flame Atomic Absorption

Introduction
人々の健康管理のため、多くの栄養補助食品、デイリーサプリメントが市販されています。これらに含まれるミネラルの濃度は、品質管理(QC)工程により精確に確認されなければなりません。さらに、栄養表示教育法(NLEA; Nutrition Labeling and Education Act of 1990)はU.S.において、全てのサプリメントに成分ラベルを明記することを義務付けています。多くのラボにおいて、この業務はフレーム原子吸光法(FAAS; flame atomic absorption spectroscopy)で行われています。FAASのメリットは、導入コストを低く抑えられることや、サンプル毎の分析コスト、その他多くの微量分析法のようなトレーニングを必要とせず簡単に使えることです。本レポートでは、PerkinElmer® PinAAcle 900Tを用いたFAASの適用を実証します。サンプルは、2種類の市販マルチミネラルタブレット、NIST®認証標準物質(Standard Reference Material)、食品CRM(commercial reference material, Mixed Food Diet)を使用しました。
Experimental Instrumentation

PinAAcle 900T フレーム／ファーネス原子吸光分析装置は、平行磁場型交流ゼーマンバックグラウンド補正を採用し、操作性の良い WinLab32 for AA (Microsoft® Windows® 7)から制御します。ネプライザーは、スペーサーを装着した高感度ネプライザー (Part No. N3160112)を使用しました。ランプは、純正のLumina ホロカソードランプを用いました。本アプリケーションの測定条件は、Table 1 に示します。全ての元素は、積分時間 4 秒とし、3 回繰返し測定としました。

Sample and Standard Preparation

NIST® SRM 3280マルチビタミン／マルチミネラルタブレットと、2 種類の市販マルチビタミン／マルチミネラルタブレットは、それぞれ粉砕してサンプル粉末としました。容量1000 mLフラスコにサンプル0.75 g、塩酸4 mL、硝酸2 mL、水を適量加え、マグネチックスターラーで1時間撹拌して溶解させました。その後、イオン交換水で定容しました。溶解したサンプルは、Whatman® 46 paper (passes < 8 micron)を用いて、タブレットコーティング由来の不溶解成分を除きました。ろ過されたサンプル溶液は、測定元素の定量範囲に合わせて適時希釈し、標準液は単元標準液(PerkinElmer製)を用いて分析を行いました。個々の元素濃度が明確になっている食品認証標準物質(CRM-MFD; Certified Reference Material Mixed Food Diet, High Purity Standards, Charleston, SC)は、酸溶解のみでサンプル溶液とし、定量範囲に合わせて適時希釈しました。

全ての市販タブレットには一錠あたり約2 mgのシリコンが含まれており、これが溶解することができません。そのため、シリコン中に含まれる元素を精確に測定するために、フッ化水素酸(HF; Trace metal grade)を用いプラスチック製のフラスコで溶解させました。

カルシウムとマグネシウム測定には、マトリックスからの化学干渉を抑えるためにLa(NO₃)₃溶液をLa濃度が0.2%となるように全ての測定サンプルに添加しました。カリウムの定量においては、イオン化抑制剤としてCsCl溶液をCs濃度が0.2%となるように添加しました。

Table 1. PinAAcle 900T Instrumental Parameters.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Ca</th>
<th>Mg</th>
<th>K</th>
<th>Fe</th>
<th>Zn</th>
<th>Cu</th>
<th>Mn</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wavelength (nm)</td>
<td>422.7</td>
<td>285.2</td>
<td>766.5</td>
<td>248.3</td>
<td>213.9</td>
<td>324.8</td>
<td>279.5</td>
</tr>
<tr>
<td>Slit Width (nm)</td>
<td>0.7</td>
<td>0.7</td>
<td>0.7</td>
<td>0.2</td>
<td>0.7</td>
<td>0.7</td>
<td>0.2</td>
</tr>
<tr>
<td>Oxidant Flow (L/min)</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>8.7</td>
<td>10</td>
</tr>
<tr>
<td>C,H Flow (L/min)</td>
<td>2.5</td>
<td>2.5</td>
<td>2.5</td>
<td>2.2</td>
<td>2.5</td>
<td>2.0</td>
<td>2.5</td>
</tr>
<tr>
<td>Working Range (mg/L)</td>
<td>5</td>
<td>1</td>
<td>4</td>
<td>4</td>
<td>1</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>HCL Part Nos.</td>
<td>N3050114</td>
<td>N3050144</td>
<td>N3050139</td>
<td>N3050126</td>
<td>N3050191</td>
<td>N3050121</td>
<td>N3050145</td>
</tr>
</tbody>
</table>

Results

全ての元素は、検量線範囲内で測定を行いました。マルチビタミン／マルチミネラルの分析結果は、Table 2 に示します。サンプルにより適時希釈を行っています。市販のタブレットはラベルに記載されている保証値単位であるmg/Tabletとして定量値を記載しました。NIST® 3280 タブレットの定量値は、認証値と良く一致しました。市販タブレットもまた製造業者が表記している保証値と良く一致することが確認されました。
FAAS による食品 CRM（Mixed Food Diet）の分析結果は、Table 3 に示します。全ての元素は認証値に対して 5%以内となり、非常に良く一致していることが確認されました。

<table>
<thead>
<tr>
<th>Element</th>
<th>Certified (mg/g)</th>
<th>Found (mg/g)</th>
<th>SD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ca</td>
<td>110.7</td>
<td>107</td>
<td>0.8</td>
</tr>
<tr>
<td>Mg</td>
<td>67.8</td>
<td>69.1</td>
<td>0.2</td>
</tr>
<tr>
<td>K</td>
<td>53.1</td>
<td>53.8</td>
<td>0.3</td>
</tr>
<tr>
<td>Fe</td>
<td>12.35</td>
<td>12.9</td>
<td>0.05</td>
</tr>
<tr>
<td>Zn</td>
<td>10.15</td>
<td>10.1</td>
<td>0.02</td>
</tr>
<tr>
<td>Cu</td>
<td>1.4</td>
<td>1.42</td>
<td>0.01</td>
</tr>
<tr>
<td>Mn</td>
<td>1.44</td>
<td>1.48</td>
<td>0.01</td>
</tr>
</tbody>
</table>

Table 3. Mixed Food Diet CRM results using aqueous standards and FAAS on a PinAAcle 900T.

Conclusions
マルチビタミン／マルチミネラルタブレットに含まれるミネラル濃度は、市販の栄養補助食品の品質を保証するために分析する必要があります。フレーム原子吸光分析装置 PinAAcle 900T を用いた本メソッドは、市販のタブレットやダイエット食品中のミネラル分析を、精確に実施できることが実証されました。この有効なメソッドは、他の分析手法に比べ、専門的なトレーニングも必要とせず、コストパフォーマンスの良い簡単な手法です。本アプリケーションは、PinAAcle 900H（フレーム／D2 補正ファーネス両用機）と PinAAcle900F（フレーム専用機）にも適用できます。

本レポートは以下を日本語訳したものでです。
AxION 2 TOF MS の精密質量、高感度、広いダイナミックレンジを用いた不純物の同定
Identification of Impurities Using Accurate Mass, Sensitivity and Wide Dynamic Range of the AxION 2 TOF MS

1. はじめに

Time of flight (TOF) mass spectrometry は正確な精密質量と広い測定範囲での高感度分析により、不純物などを含む未知物質の同定が可能です。PerkinElmer AxION 2 TOF MS の正確な精密質量と独自の TrapPulse テクノロジーを使用して、医薬品中の不純物を見つけ、それらの同定を行うための解析手順を構築することができます。従来の質量分析装置、たとえばトリプル四重極質量分析装置は広いマスレンジを測定した場合、著しい感度の低下が見られます。このような感度低下はスキャン速度が速い AxION 2 TOF MS には起こらず、これにより不純物の検出を可能にします。AxION 2 TOF MS の革新的な TrapPulse モードは、イオンをパルスでフライトチュー プに送る前にイオンパックにイオンを一旦ためることにより感度が増加します。本研究においては 8 倍感度が増加し、従来の TOF では検出することが困難であった低濃度の未知物質を容易に検出できることが可能になります。

AxION 2 TOF MS は広いダイナミックレンジ、高感度に加えて、ロックマス補正、正確な同位体分布、高分解能による精密質量から迅速で正確に不純物の同定を行うことが可能です。AxION 2 TOF MS の正確な精密質量と同位体比により、未知物質の組成を推定する場合に、可能性のある候補を著しく減らすことができます。一般的に未知物質の組成を同定する場合、精密質量と同位体パターンに基づいて組成解析を行いますが、PerkinElmer AxION EC ID ソフトウェアは精密質量と同位体分布の一致に加えて、存在する組成のデータベースに対しての検索からも候補を絞り込むことができます。質量精度と同位体比の誤差範囲を指定し検索結果がランク付けされます。
その結果、追加実験を行う必要がなく、存在しない組成を除外して、正しい組成を選択する可能性が高くなります。

ここではその例としてメラトニンを分析し、不純物のスクリーニングと同定を行いました。メラトニンは特定の食べ物に含まれており、アメリカでは OTC メラトニンサプリメントとして販売され、未知の不純物を含んでいると考えられます。

2. 実験方法
1) LC 条件
LC 装置: Flexar FX-10 HPLC
LC カラム: PerkinElmer Brownlee Supra column C18 (1.9 µm, 2.1x50 mm)
カラム温度: 25℃
移動相 A: 0.1 %ギ酸水
移動相 B: 0.1 %ギ酸アセトニトリル
注入量: 2 µL
グラジェント: 20 %B → 40 %B (5分) → 70 %B (2分)

2) MS 条件
質量分析装置: PerkinElmer AxION 2 TOF (ポジティブモード)
イオン源: PerkinElmer Ultraspray 2 (Dual ESI source)
キャピラリー電圧: +100 V
Pulse モード: m/z 100-700
TrapPulse モード: m/z 100-700

3) 試料の前処理
1mg のメラトニンを含む OTC メラトニンを乳鉢と乳棒で砕き、10mL の水に溶解して撹拌しました。6,000 rpm で 10 分遠心し、上清を試料としました。

3. 結果と考察
試料の不純物分析は、Flexar FX-10 HPLC と AxION 2 TOF MS により行いました。
PerkinElmer Flexar FX-10 を接続した AxION 2 TOF MS は AxION データシステムにより制御、解析を行いました。このソフトウェアは AxION 2 TOF MS 用の Autotune、1 画面上でのメッセージ作成、データの取り込みなどが組み込まれており、装置のスタートアップが容易です。单一のソフトウェアパッケージを介した装置の接続により迅速な分析を行うことができます。

高感度の AxION 2 TOF MS は TrapPulse モードを使用することにより不純物分析を容易にします。従来のパルスモードでの分析では、メラトニンの不純物は3つのピークしか検出されませんでした（図 1. a）。しかし TrapPulse モードを用いることにより、8倍の感度増加が見られ、パルスモードでは検出されなかったピークを検出することができました（図 1. b）。この広いダイナミックレンジをもつ AxION 2 TOF MS で測定することにより一回の分析で多数の不純物を同定することができます。このように一度の分析で全体の質量範囲にわたる測定が可能で、より簡単に、より速い分析方法の開発が可能であると言えます。

未知不純物の同定
AxION 2 TOF MS の精密質量と正確な同位体比は AxION EC ID ソフトウェアによりさらに未知物質の同定を容易にします。不純物 A と D は同じ質量ですが、リテンションタイムとマススペクトルの違いから、異性体と考えられます（図 2）。CID によるフラグメントイオンの正確なマススペクトルから、これらの 2つのピークが同じ組成であり、違った構造を持つことがさらに確認できます（図 2c, 2d）。組成の同定は AxION EC ID から行うことができ（図 3a, 3b）、AxION EC ID から PubChem の自動検索を立ち上げることができます（図 3c）。AxION 2 TOF MS で得られた精密質量データと同位体比から AxION EC ID を用いることで一つの候補に絞り込むことができました。N1-acetyl-N2-formyl-5-methoxykynurenin (AFMK)
はPubChemの検索によりヒットし、in vivoの実験でメラトニンの代謝物であることが報告されています。メラトニンの試料にAFMKの標準品を添加したところ、ピークDと同じリテンションタイムであり、同じマススペクトルであることが確認できました（図2b, 2d）。

四重極型質量分析装置を用いたWilliamsonらの報告ではピークDはindolineであると推測されています1）。Williamsonらが推定したindolineの組成式\((C_{14}H_{20}N_{2}O_{3})\)から得られる精密質量は265.15467ですが、AxION2TOFMSから得られたピークDの精密質量と比較すると質量誤差は140ppm以上違っていいます。これは報告されている構造が違っていることを示唆しています。

4. 結語

PerkinElmerFlexarFX-10を接続したAxION2TOFMSと革新的な解析用ソフトウェアにより、さらに容易に不純物の分析を行うことができました。この分析方法は速く、簡単で正確です。単一のインターフェースですべての装置の機能を制御できるこのソフトウェアは、確実なスタートアップと試料分析を可能にします。さらにこのシステムは未知不純物の確実な同定のための迅速で容易な結果の解析を可能にします。

図2.(a)メラトニン中の異性体AとDのBIC(m/z 265.132±0.05)(b)メラトニンにAFMKを添加したときのBIC(m/z 265.132±0.05)(c)不純物ピークAのマススペクトルピークAの[M+H]+とフラグメントイオンの理論値との誤差は2ppm以下(d)ピークDのマススペクトル[M+H]+とフラグメントイオンの理論値との誤差は2.5ppm以下
図3. (a)精密質量と同位体パターンから決定されたAxION EC IDの結果 （b)分析結果と検索結果の組成の比較 （c)AxION EC IDからのPubChem検索で得られた組成

Reference

本レポートは以下を日本語訳したものです。
元素不純物分析に関する新しい USP: NexION 300X ICP-MS による対応

Benefits of the NexION 300X ICP-MS Coupled with the prepFAST In-line Auto-dilution/calibration System for the Implementation of the New USP Chapters on Elemental Impurities

はじめに
米国薬局方(USP)は、ICP-OES/ICP-MS を用いて医薬品中の金属汚染を決定するための新たなメソッドを 2012 年 4 月に公示しました。このメソッドは Chapter <231>に代わるもので、“Elemental Impurities – Limits and Procedures”(元素不純物 – 基準と手順)1,2 と題して General Chapter <232>と<233>にまとめられています。Chapter <231>は重金属試験法で、試料中の金属を硫化物として沈殿させ、鉛標準との比較を行うものです3。この方法は 100 年以上も使用されてきましたが、間違いないようごしやすいことや色を正しく解釈することができる熟練した分析者が必要であることが知られています。
本報では、不純物レベルと推奨分析手順に重点を置き、USP 方法論の概要を説明します。また、様々な医薬品中の有害金属を測定することを想定し、NexION ICP-MS とオンライン自動希釈・自動検量線作成機能を持つオートサンプラーを用いて測定する手法を検討しました。主要な製剤投与方法(経口、注射・点滴、吸入)を網羅するため一般的な製剤の分析に適用し、新しい USP のバリデーションプロトコルに基づいてシステムの性能を評価しました。
医薬品中の元素不純物

Chapter <232>では元素とその毒性限界を一覧として示しており、投与方法毎 - 経口、非経口(注射)、吸入および大容量非経口 - に1日許容曝露量として定義しています。一方 Chapter <233>は、元素測定のための試料前処理、分析方法、QCバリデーションプロトコルを取り扱っており、分析手法はICP発光分光分析法(ICP-OES)、ICP質量分析法(ICP-MS)または完全に検証された同等の代替技術から選択することとされています。以下に、両者についてもう少し詳細を述べます。

Chapter <232>

Table1に薬剤投与における1日許容曝露量 - permissible daily exposure : PDE -値(μg/day)を示します。PDE値は、平均的な体重である50kgの人を基準に設定されています。元素不純物の毒性はその生物学的利用能と相関があるため、PDE値は元素不純物毎および3つの投与方法毎 - 経口、非経口(注射)、吸入 - に決められています。一日の注射量が100mL以上の場合、元素量は製剤を製造するのに使用される個々の化合物から管理する必要があります。これは大容量非経口製剤 - large volume parenteral : LVP - 値(μg/g)として知られており、Table 1の一番右の列に示します。

本Chapterでは、製剤の最終用途・投与量における元素不純物の許容濃度限度値についても定義しています。これは、製剤メーカーが、製剤中不純物が一般的な1日最大摂取量である10g/day以下において許容レベルであることを評価する基準となります。これらの値はすべての個々の化合物の合計(最終製剤を構成する有効成分や賦形剤/添加剤)を考慮するためにも使用されます。

Table 1. 体重50kgの人を基準とした、投与方法毎の1日許容曝露量(PDE)値(μg/day)

<table>
<thead>
<tr>
<th>元素</th>
<th>経口 PDE (μg/day)</th>
<th>非経口 PDE (μg/day)</th>
<th>吸入 PDE (μg/day)</th>
<th>LVP 界限(μg/day)</th>
</tr>
</thead>
<tbody>
<tr>
<td>カドミウム</td>
<td>25</td>
<td>2.5</td>
<td>1.5</td>
<td>0.25</td>
</tr>
<tr>
<td>鉛</td>
<td>15</td>
<td>5</td>
<td>5</td>
<td>0.5</td>
</tr>
<tr>
<td>無機ヒ素</td>
<td>1.5</td>
<td>1.5</td>
<td>1.5</td>
<td>0.15</td>
</tr>
<tr>
<td>無機水銀</td>
<td>15</td>
<td>1.5</td>
<td>1.5</td>
<td>0.15</td>
</tr>
<tr>
<td>イリジウム</td>
<td>100</td>
<td>10</td>
<td>1.5</td>
<td>1.0</td>
</tr>
<tr>
<td>オスミウム</td>
<td>100</td>
<td>10</td>
<td>1.5</td>
<td>1.0</td>
</tr>
<tr>
<td>パラジウム</td>
<td>100</td>
<td>10</td>
<td>1.5</td>
<td>1.0</td>
</tr>
<tr>
<td>白金</td>
<td>100</td>
<td>10</td>
<td>1.5</td>
<td>1.0</td>
</tr>
<tr>
<td>ロジウム</td>
<td>100</td>
<td>10</td>
<td>1.5</td>
<td>1.0</td>
</tr>
<tr>
<td>ルテニウム</td>
<td>100</td>
<td>10</td>
<td>1.5</td>
<td>1.0</td>
</tr>
<tr>
<td>クロム</td>
<td>*</td>
<td>*</td>
<td>25</td>
<td>*</td>
</tr>
<tr>
<td>モリブデン</td>
<td>100</td>
<td>10</td>
<td>10</td>
<td>1.0</td>
</tr>
<tr>
<td>ニッケル</td>
<td>500</td>
<td>50</td>
<td>1.5</td>
<td>5.0</td>
</tr>
<tr>
<td>バナジウム</td>
<td>100</td>
<td>10</td>
<td>30</td>
<td>1.0</td>
</tr>
<tr>
<td>銅</td>
<td>1000</td>
<td>100</td>
<td>70</td>
<td>25</td>
</tr>
</tbody>
</table>

注：*=安全性の問題は考慮されない
Chapter <233>

本Chapterには、ICP-OESおよびICP-MSでの分析手順について記載されています（試料前処理を含む）。また、製剤中の元素不純物を測定するためのバリデーションプロトコルについても記載されています5,6。

ICP-MS法

装置に関する方法論は非常に一般的な内容となっており、装置条件や推奨測定質量数についての詳細には触れられていません。メソッドが正しく機能していることを確認するためのQC/QAバリデーションプロトコルについても記載されています。

- 各元素のターゲット濃度（J値）は、体重・投与回数・投与/服用頻度に基づいて見積られた元素不純物の許容濃度限度値として定義。
- マトリックスを合わせたプランクと標準液2点で検量線を作成。2点の標準液のうち1点はターゲット濃度の2倍（2J）、もう1点はターゲット濃度の半分（0.5J）。
- 試料は測定対象元素濃度がターゲット濃度の2倍（2J）を超えないように希釈。
- 装置条件・測定質量数・マトリックスに起因する多原子イオン干渉への適切な措置については、装置メーカーの推奨に従う。
- コリジョン/リアクションセルは多原子イオン干渉の低減/除去のために使用してもよい。
- 一連のQCバリデーションプロトコルには、添加回収・真度（accuracy）・精度（precision）・併行精度（repeatability）試験を含み、信頼できる結果が得られていることを確認する。

試料前処理

以下の4種の異なる方法を用いることができます。

- 試料が適当な溶液状態である場合、希釈せずに測定
- 試料が水溶性の場合、酸性水溶液で希釈して測定
- 試料が水不溶性の場合、適切な有機溶剤で希釈して測定
- 試料が不溶性の場合、密閉系容器を用いたマイクロ波酸分解法で溶液化して測定

多原子イオン干渉の原因となるため、前処理に使用する酸の選択にご注意ください。
装置
本実験では、NexION 300X ICP-MS (PrekinElmer 社製) にオンライン自動希釈および自動検量線作成機能を持つ PrepFAST オートサンプラー (Elemental Scientific 社製) を接続して使用しました。NexION 300 はユーザーフレンドリーな使いやすさと、コリジョン法のシンプルさに加えリアクション法の高い干渉除去能力を兼ね備えた ICP-MS です。特許を取得しているユニバーサルセルテクノロジー (UCT) を搭載しているため、コリジョン法を含むリアクション法から適切な干渉除去方法を選択することができます。また、トリプルコーンインターフェイス (TCI)や四重極イオンディフレクタ (QID) などの技術により、感度変動は最少に抑えられ、装置内の汚染も防げることからメンテナンス頻度が格段に少なくなった。NexION300X はセルガスラインがシングルチャンネルのモデルで、コリジョン (KED) モードあるいはリアクション (DRC) モードに対応できます。もちろん標準 (ガス無) モードでの測定も可能です。

PrepFAST は NexION 300X と組み合わせて使用できる自動希釈システムで、試料の自動希釈やストック標準液からの検量線作成に対応します。試料溶液は、素早くかつ再現性良くサンプルループにロードされます。PrepFAST によるプロセスを Figure 1 に示します。Step 1 におけるシリンジリセットの間にループは迅速に洗浄され、試料がロードされます。その間、ネブライザとスプレーチャンバはリンス液で洗浄されます。Step 2 では、試料は希釈液 (port 3) と内標準液 (port 7) の添加および混合が行われてながら NexION ICP-MS に導入されます。

Figure 1. prepFAST システムでのループへのサンプルロードとオンライン希釈の 2 ステップ図
製剤の評価
Table 2 に示す製剤を用いて評価を実施しました。これらは、Table 1 で示した、3 つの異なる投与方法（経口、吸入、大容量非経口）に属しています。

Table 2. 本実験で評価した製剤

<table>
<thead>
<tr>
<th>製剤</th>
<th>投与方法</th>
<th>形状</th>
<th>試料前処理</th>
<th>希釈倍率</th>
</tr>
</thead>
<tbody>
<tr>
<td>関節炎鎮痛薬</td>
<td>経口</td>
<td>タブレット</td>
<td>マイクロウェーブ分解</td>
<td>1g/50mL</td>
</tr>
<tr>
<td>風邪薬</td>
<td>経口</td>
<td>粉末</td>
<td>ホットプレート分解</td>
<td>1g/50mL</td>
</tr>
<tr>
<td>アレルギー/喘息スプレー</td>
<td>吸入</td>
<td>液体</td>
<td>希釈</td>
<td>1g/50mL</td>
</tr>
<tr>
<td>乳酸加リンゲル液</td>
<td>大容量非経口</td>
<td>液体</td>
<td>希釈</td>
<td>1g/50mL</td>
</tr>
</tbody>
</table>

試料前処理
試料 1g を溶液化し、最終溶液を得るために 2%硝酸/0.5%塩酸混合液で希釈しました。関節炎鎮痛薬は粉末化した後、マイクロウェーブ試料前処理装置により分解し、50mL に定容しました。風邪薬は酸混合液に溶かし、ホットプレートで加熱し冷却後、50mL に定容しました。アレルギー薬は液体状のため、1g を酸混合液で 50mL に定容しました。経口製剤は prepFAST システムでさらに 10 倍希釈をし、最終希釈倍率は 500 倍としました。異なる薬品の分析を行う場合、それぞれの PDE 値が異なるとターゲット濃度（J）が変化するため、試料希釈もしくは新たな検量線作成が必要となることに注意してください。

装置条件
本実験に用いた装置条件を Table 3 に示します。

Table 3. 製剤分析における ICP-MS 装置条件

<table>
<thead>
<tr>
<th>項目</th>
<th>種類/値/モード</th>
</tr>
</thead>
<tbody>
<tr>
<td>ネプライザ</td>
<td>PFA ST Microflow</td>
</tr>
<tr>
<td>スプレーチャンバ</td>
<td>石英製サイクロン形</td>
</tr>
<tr>
<td>コーン材質</td>
<td>Ni</td>
</tr>
<tr>
<td>プラズマガス流量</td>
<td>16.0 L/min</td>
</tr>
<tr>
<td>補助ガス流量</td>
<td>1.1 L/min</td>
</tr>
<tr>
<td>ネプライザガス流量</td>
<td>0.99 L/min</td>
</tr>
<tr>
<td>試料吸い上げ量</td>
<td>400 µL/min</td>
</tr>
<tr>
<td>プラズマ出力</td>
<td>1600 W</td>
</tr>
<tr>
<td>測定元素 (He ガスを用いたコリジョン法)</td>
<td>51V, 52Cr, 60Ni, 63Cu, 75As, 95Mo, 103Ru, 103Rh, 105Pd, 114Cd, 189Os, 193Ir, 195Pt,</td>
</tr>
<tr>
<td>内標準元素</td>
<td>69Ga, 74Ge, 115In, 150Tb</td>
</tr>
<tr>
<td>自動希釈/自動検量線</td>
<td>ESI prepFAST</td>
</tr>
<tr>
<td>試料処理システム</td>
<td></td>
</tr>
<tr>
<td>繰り返し測定回数</td>
<td>3</td>
</tr>
<tr>
<td>データ取り込み時間 (3 回繰り返し)</td>
<td>1 min 35 sec</td>
</tr>
<tr>
<td>測定時間 (洗浄時間など含む)</td>
<td>2 min 40 sec</td>
</tr>
</tbody>
</table>
検量線
測定対象元素のターゲット濃度（J）と試料前処理法により、0.5J および 2J 濃度の検量線溶液が必要です。Table 4 に経口製剤の PDE 値（μg/day）を示します。同時に、1 日最大摂取量である 10g/day と最終試料希釈倍率である 500 倍により算出したターゲット濃度（μg/L）を示します。得られた検量線は、すべての元素で相関係数が 0.999 以上の良好な直線性を示しました。検量線の中から、低濃度の例として Pb、中濃度の例として Ir、高濃度の例として Cu の 3 元素の検量線を Fig.2~4 に示します。

<table>
<thead>
<tr>
<th>元素/質量数</th>
<th>経口製剤 PDE（μg/day）</th>
<th>J（μg/L）</th>
<th>0.5 J（μg/L）</th>
<th>2.0 J（μg/L）</th>
<th>検量線直線性（相関係数）</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cd 114</td>
<td>25</td>
<td>5</td>
<td>2.5</td>
<td>10</td>
<td>0.999886</td>
</tr>
<tr>
<td>Pb 208</td>
<td>5</td>
<td>1</td>
<td>0.5</td>
<td>2</td>
<td>0.999927</td>
</tr>
<tr>
<td>As 75</td>
<td>1.5</td>
<td>0.3</td>
<td>0.15</td>
<td>0.6</td>
<td>0.999854</td>
</tr>
<tr>
<td>Hg 202</td>
<td>15</td>
<td>3</td>
<td>1.5</td>
<td>6</td>
<td>0.999967</td>
</tr>
<tr>
<td>Ir 193</td>
<td>100</td>
<td>20</td>
<td>10</td>
<td>40</td>
<td>0.999860</td>
</tr>
<tr>
<td>Os 189</td>
<td>100</td>
<td>20</td>
<td>10</td>
<td>40</td>
<td>0.999977</td>
</tr>
<tr>
<td>Pt 195</td>
<td>100</td>
<td>20</td>
<td>10</td>
<td>40</td>
<td>0.999703</td>
</tr>
<tr>
<td>Pd 105</td>
<td>100</td>
<td>20</td>
<td>10</td>
<td>40</td>
<td>0.999949</td>
</tr>
<tr>
<td>Rh 103</td>
<td>100</td>
<td>20</td>
<td>10</td>
<td>40</td>
<td>0.999914</td>
</tr>
<tr>
<td>Ru 101</td>
<td>100</td>
<td>20</td>
<td>10</td>
<td>40</td>
<td>0.999919</td>
</tr>
<tr>
<td>Mo 95</td>
<td>100</td>
<td>20</td>
<td>10</td>
<td>40</td>
<td>1.000000</td>
</tr>
<tr>
<td>Ni60</td>
<td>500</td>
<td>100</td>
<td>50</td>
<td>200</td>
<td>0.999932</td>
</tr>
<tr>
<td>V 51</td>
<td>100</td>
<td>20</td>
<td>10</td>
<td>40</td>
<td>0.999898</td>
</tr>
<tr>
<td>Cu 63</td>
<td>1000</td>
<td>200</td>
<td>100</td>
<td>400</td>
<td>1.000000</td>
</tr>
</tbody>
</table>
Figure 2. Pb 検量線、低濃度の例 (PDE - 5 ug/day)

Figure 3. Ir 検量線、中濃度の例 (PDE - 100 ug/day)

Figure 4. Cu 検量線、高濃度の例 (PDE - 1000 ug/day)
結果

Chapter<233>には測定法に対するバリデーションのための QC/QA プロトコルが定義されており、以下の項目の確認を行います。

- 真度 (accuracy): ターゲット濃度から求めた適切な添加濃度を用いた添加回収率(%)
- 併行精度 (repeatability): 6 種類の独立した試料にターゲット濃度から求めた濃度の標準を添加して求めた、回収率と再現性
- 室内再現性: 異なる日、異なる装置（もしくは異なる作業者）による測定の再現性
- システム適合性: 一連の測定の前後でのターゲット濃度標準液の安定性

4 種すべての製剤中不純物濃度の測定は 3 回実施しました。Table 5~8 は各製剤中の不純物濃度と 0.8J 添加における回収率を示します。USP が認める添加回収率は 70~150%となっています。各表には 1 日最大摂取量から求めた許容濃度限界値(μg/g)と製剤中の方法検出界限(MDL)を示します。MDL は試料重量と希釈倍率を用いて算出しており、使用した分析手法による検出能力を表します。また、表中の<MDL は、方法検出界限以下を示しています。

Table 5. 関節炎鎮痛薬中の元素不純物量および 0.8J 添加回収率と MDL

<table>
<thead>
<tr>
<th>元素</th>
<th>1日最大摂取量 10g/day における経口製剤の許容濃度限界値(μg/g)</th>
<th>不純物濃度(μg/g)</th>
<th>0.8J 添加における回収率</th>
<th>500 倍希釈における方法検出界限(MDLs)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cd</td>
<td>2.5</td>
<td><MDL</td>
<td>103%</td>
<td>0.0004</td>
</tr>
<tr>
<td>Pb</td>
<td>0.5</td>
<td>0.016</td>
<td>102%</td>
<td>0.0007</td>
</tr>
<tr>
<td>As</td>
<td>0.15</td>
<td><MDL</td>
<td>110%</td>
<td>0.0045</td>
</tr>
<tr>
<td>Hg</td>
<td>1.5</td>
<td><MDL</td>
<td>99%</td>
<td>0.0080</td>
</tr>
<tr>
<td>Ir</td>
<td>10</td>
<td>0.031</td>
<td>102%</td>
<td>0.0005</td>
</tr>
<tr>
<td>Os</td>
<td>10</td>
<td><MDL</td>
<td>105%</td>
<td>0.0010</td>
</tr>
<tr>
<td>Pd</td>
<td>10</td>
<td><MDL</td>
<td>97%</td>
<td>0.0025</td>
</tr>
<tr>
<td>Pt</td>
<td>10</td>
<td><MDL</td>
<td>103%</td>
<td>0.0019</td>
</tr>
<tr>
<td>Rh</td>
<td>10</td>
<td><MDL</td>
<td>102%</td>
<td>0.0002</td>
</tr>
<tr>
<td>Ru</td>
<td>10</td>
<td>0.006</td>
<td>106%</td>
<td>0.0005</td>
</tr>
<tr>
<td>Mo</td>
<td>10</td>
<td><MDL</td>
<td>108%</td>
<td>0.0029</td>
</tr>
<tr>
<td>Ni</td>
<td>50</td>
<td>0.141</td>
<td>105%</td>
<td>0.0026</td>
</tr>
<tr>
<td>V</td>
<td>10</td>
<td>0.102</td>
<td>109%</td>
<td>0.0053</td>
</tr>
<tr>
<td>Cu</td>
<td>100</td>
<td>0.011</td>
<td>101%</td>
<td>0.0021</td>
</tr>
</tbody>
</table>
Table 6. 風邪薬中の元素不純物量および0.8J添加回収率とMDL

<table>
<thead>
<tr>
<th>元素</th>
<th>1日最大摂取量 10g/dayにおける経口製剤の許容濃度限界値(μg/g)</th>
<th>不純物濃度(μg/g)</th>
<th>0.8J添加における回収率</th>
<th>500倍希釈における方法検出限界(MDLs)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cd</td>
<td>2.5</td>
<td><MDL</td>
<td>105%</td>
<td>0.0004</td>
</tr>
<tr>
<td>Pb</td>
<td>0.5</td>
<td>0.003</td>
<td>106%</td>
<td>0.0007</td>
</tr>
<tr>
<td>As</td>
<td>0.15</td>
<td>0.006</td>
<td>110%</td>
<td>0.0045</td>
</tr>
<tr>
<td>Hg</td>
<td>1.5</td>
<td><MDL</td>
<td>105%</td>
<td>0.0080</td>
</tr>
<tr>
<td>Ir</td>
<td>10</td>
<td><MDL</td>
<td>105%</td>
<td>0.0005</td>
</tr>
<tr>
<td>Os</td>
<td>10</td>
<td><MDL</td>
<td>105%</td>
<td>0.0010</td>
</tr>
<tr>
<td>Pd</td>
<td>10</td>
<td><MDL</td>
<td>98%</td>
<td>0.0025</td>
</tr>
<tr>
<td>Pt</td>
<td>10</td>
<td><MDL</td>
<td>105%</td>
<td>0.0019</td>
</tr>
<tr>
<td>Rh</td>
<td>10</td>
<td><MDL</td>
<td>105%</td>
<td>0.0002</td>
</tr>
<tr>
<td>Ru</td>
<td>10</td>
<td>0.002</td>
<td>106%</td>
<td>0.0005</td>
</tr>
<tr>
<td>Mo</td>
<td>10</td>
<td><MDL</td>
<td>105%</td>
<td>0.0029</td>
</tr>
<tr>
<td>Ni</td>
<td>50</td>
<td><MDL</td>
<td>106%</td>
<td>0.0026</td>
</tr>
<tr>
<td>V</td>
<td>10</td>
<td>0.054</td>
<td>105%</td>
<td>0.0053</td>
</tr>
<tr>
<td>Cu</td>
<td>100</td>
<td><MDL</td>
<td>103%</td>
<td>0.0021</td>
</tr>
</tbody>
</table>

「試料前処理」の項目に記載したように、アレルギースプレーおよびリンゲル液については、2%硝酸溶液で50倍に希釈しました。また、これら2つの試料については、V, Cr, Ni, Cu, Asをコリジョンモードで、その他の元素を標準モードで測定しました。干渉の影響を受けない元素は標準モードを用いることで、より感度良く測定が可能です。

Table 7. アレルギー/喘息スプレー中の元素不純物量および0.8J添加回収率とMDL

<table>
<thead>
<tr>
<th>元素</th>
<th>1日最大摂取量 10g/dayにおける経口製剤の許容濃度限界値(μg/g)</th>
<th>不純物濃度(μg/g)</th>
<th>0.8J添加における回収率</th>
<th>50倍希釈における方法検出限界(MDLs)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cd</td>
<td>1.5</td>
<td><MDL</td>
<td>101%</td>
<td>0.0001</td>
</tr>
<tr>
<td>Pb</td>
<td>5</td>
<td><MDL</td>
<td>106%</td>
<td>0.0003</td>
</tr>
<tr>
<td>As</td>
<td>1.5</td>
<td><MDL</td>
<td>101%</td>
<td>0.0001</td>
</tr>
<tr>
<td>Hg</td>
<td>1.5</td>
<td>0.0028</td>
<td>104%</td>
<td>0.0002</td>
</tr>
<tr>
<td>Ir</td>
<td>1.5</td>
<td><MDL</td>
<td>104%</td>
<td>0.0005</td>
</tr>
<tr>
<td>Os</td>
<td>1.5</td>
<td><MDL</td>
<td>107%</td>
<td>0.0010</td>
</tr>
<tr>
<td>Pd</td>
<td>1.5</td>
<td><MDL</td>
<td>102%</td>
<td>0.0006</td>
</tr>
<tr>
<td>Pt</td>
<td>1.5</td>
<td><MDL</td>
<td>103%</td>
<td>0.0005</td>
</tr>
<tr>
<td>Rh</td>
<td>1.5</td>
<td><MDL</td>
<td>102%</td>
<td>0.0002</td>
</tr>
<tr>
<td>Ru</td>
<td>1.5</td>
<td><MDL</td>
<td>100%</td>
<td>0.0003</td>
</tr>
<tr>
<td>Mo</td>
<td>25</td>
<td>0.0013</td>
<td>104%</td>
<td>0.0002</td>
</tr>
<tr>
<td>Ni</td>
<td>10</td>
<td><MDL</td>
<td>103%</td>
<td>0.0001</td>
</tr>
<tr>
<td>V</td>
<td>1.5</td>
<td><MDL</td>
<td>102%</td>
<td>0.0005</td>
</tr>
<tr>
<td>Cu</td>
<td>30</td>
<td><MDL</td>
<td>104%</td>
<td>0.0001</td>
</tr>
</tbody>
</table>
Table 8. 乳酸加リンゲル液中の元素不純物量および 0.8J 添加回収率と MDL

<table>
<thead>
<tr>
<th>元素</th>
<th>1 日最大摂取量 10g/day における経口製剤の許容濃度限界値(μg/g)</th>
<th>不純物濃度(μg/g)</th>
<th>0.8J 添加における回収率</th>
<th>50 倍希釈における方法検出限界(MDLs)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cd</td>
<td>0.25 <MDL</td>
<td>101%</td>
<td>0.0001</td>
<td></td>
</tr>
<tr>
<td>Pb</td>
<td>0.5 <MDL</td>
<td>97%</td>
<td>0.0003</td>
<td></td>
</tr>
<tr>
<td>As</td>
<td>0.15 <MDL</td>
<td>109%</td>
<td>0.0001</td>
<td></td>
</tr>
<tr>
<td>Hg</td>
<td>0.15 <MDL</td>
<td>99%</td>
<td>0.0002</td>
<td></td>
</tr>
<tr>
<td>Ir</td>
<td>1 <MDL</td>
<td>101%</td>
<td>0.0005</td>
<td></td>
</tr>
<tr>
<td>Os</td>
<td>1 <MDL</td>
<td>102%</td>
<td>0.0010</td>
<td></td>
</tr>
<tr>
<td>Pd</td>
<td>1 <MDL</td>
<td>95%</td>
<td>0.0006</td>
<td></td>
</tr>
<tr>
<td>Pt</td>
<td>1 <MDL</td>
<td>101%</td>
<td>0.0005</td>
<td></td>
</tr>
<tr>
<td>Rh</td>
<td>1 <MDL</td>
<td>101%</td>
<td>0.0002</td>
<td></td>
</tr>
<tr>
<td>Ru</td>
<td>1 <MDL</td>
<td>101%</td>
<td>0.0003</td>
<td></td>
</tr>
<tr>
<td>Mo</td>
<td>1 <MDL</td>
<td>106%</td>
<td>0.0001</td>
<td></td>
</tr>
<tr>
<td>Ni</td>
<td>5 <MDL</td>
<td>92%</td>
<td>0.0005</td>
<td></td>
</tr>
<tr>
<td>V</td>
<td>1 <MDL</td>
<td>99%</td>
<td>0.0001</td>
<td></td>
</tr>
<tr>
<td>Cu</td>
<td>25 <MDL</td>
<td>94%</td>
<td>0.0001</td>
<td></td>
</tr>
</tbody>
</table>

バリデーションプロトコル
風邪薬を使用し、QC バリデーションテストを実施しました。6 つの独立した試料における並行精度試験の結果(回収率%と%RSD)を Table 9 に示します。この試験には、前処理および希釈を実施した風邪薬に 1J 濃度の標準液を添加した試料を用いました。USP の定めた%RSD の基準は「20%以下」であり、全ての元素において基準を満たす結果が得られました。

Table 9. 独立した 6 検体（前処理後の風邪薬試料に 1J 標準添加）における回収率(%)とその再現性(％RSD)

<table>
<thead>
<tr>
<th>元素</th>
<th>試料 #1 (回収率%)</th>
<th>試料 #2 (回収率%)</th>
<th>試料 #3 (回収率%)</th>
<th>試料 #4 (回収率%)</th>
<th>試料 #5 (回収率%)</th>
<th>試料 #6 (回収率%)</th>
<th>% RSD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cd</td>
<td>103%</td>
<td>100%</td>
<td>103%</td>
<td>102%</td>
<td>102%</td>
<td>104%</td>
<td>1.4%</td>
</tr>
<tr>
<td>Pb</td>
<td>99%</td>
<td>98%</td>
<td>99%</td>
<td>98%</td>
<td>99%</td>
<td>99%</td>
<td>0.6%</td>
</tr>
<tr>
<td>As</td>
<td>105%</td>
<td>102%</td>
<td>106%</td>
<td>105%</td>
<td>106%</td>
<td>104%</td>
<td>1.8%</td>
</tr>
<tr>
<td>Hg</td>
<td>105%</td>
<td>102%</td>
<td>103%</td>
<td>102%</td>
<td>104%</td>
<td>105%</td>
<td>1.2%</td>
</tr>
<tr>
<td>Ir</td>
<td>102%</td>
<td>101%</td>
<td>101%</td>
<td>101%</td>
<td>103%</td>
<td>103%</td>
<td>0.9%</td>
</tr>
<tr>
<td>Os</td>
<td>100%</td>
<td>98%</td>
<td>99%</td>
<td>100%</td>
<td>100%</td>
<td>101%</td>
<td>0.9%</td>
</tr>
<tr>
<td>Pd</td>
<td>106%</td>
<td>103%</td>
<td>106%</td>
<td>104%</td>
<td>105%</td>
<td>107%</td>
<td>1.4%</td>
</tr>
<tr>
<td>Pt</td>
<td>91%</td>
<td>90%</td>
<td>91%</td>
<td>91%</td>
<td>92%</td>
<td>93%</td>
<td>0.9%</td>
</tr>
<tr>
<td>Rh</td>
<td>109%</td>
<td>106%</td>
<td>108%</td>
<td>106%</td>
<td>108%</td>
<td>109%</td>
<td>1.2%</td>
</tr>
<tr>
<td>Ru</td>
<td>107%</td>
<td>104%</td>
<td>106%</td>
<td>105%</td>
<td>105%</td>
<td>107%</td>
<td>1.2%</td>
</tr>
<tr>
<td>Mo</td>
<td>107%</td>
<td>105%</td>
<td>108%</td>
<td>106%</td>
<td>106%</td>
<td>108%</td>
<td>1.2%</td>
</tr>
<tr>
<td>Ni</td>
<td>107%</td>
<td>107%</td>
<td>110%</td>
<td>108%</td>
<td>110%</td>
<td>110%</td>
<td>1.5%</td>
</tr>
<tr>
<td>V</td>
<td>106%</td>
<td>105%</td>
<td>106%</td>
<td>105%</td>
<td>107%</td>
<td>107%</td>
<td>0.8%</td>
</tr>
<tr>
<td>Cu</td>
<td>105%</td>
<td>105%</td>
<td>107%</td>
<td>105%</td>
<td>108%</td>
<td>108%</td>
<td>1.5%</td>
</tr>
</tbody>
</table>
メソッドの頑健性試験の結果は Table 10 に示します。この試験には、前処理および希釈を実施した風邪薬に 1J 濃度の標準液を添加した試料を用い、試料は異なる 3 日に測定を実施しました。USP の定めた%RSD の基準は「25%以下」であり、全ての元素において基準を満たす結果が得られました。

Table 10. 頑健性試験: 領域を異なる 3 日における試料測定 (前処理後の風邪薬試料に 1J 標準添加) から求めた回収率%とその再現性(%RSD)

<table>
<thead>
<tr>
<th>元素</th>
<th>試料 #1 (回収率%)</th>
<th>試料 #2 (回収率%)</th>
<th>試料 #3 (回収率%)</th>
<th>% RSD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cd</td>
<td>102%</td>
<td>100%</td>
<td>103%</td>
<td>1.2%</td>
</tr>
<tr>
<td>Pb</td>
<td>98%</td>
<td>100%</td>
<td>101%</td>
<td>1.0%</td>
</tr>
<tr>
<td>As</td>
<td>105%</td>
<td>103%</td>
<td>107%</td>
<td>1.6%</td>
</tr>
<tr>
<td>Hg</td>
<td>104%</td>
<td>106%</td>
<td>106%</td>
<td>1.0%</td>
</tr>
<tr>
<td>Ir</td>
<td>102%</td>
<td>104%</td>
<td>103%</td>
<td>0.8%</td>
</tr>
<tr>
<td>Os</td>
<td>100%</td>
<td>96%</td>
<td>92%</td>
<td>3.3%</td>
</tr>
<tr>
<td>Pd</td>
<td>105%</td>
<td>102%</td>
<td>104%</td>
<td>1.4%</td>
</tr>
<tr>
<td>Pt</td>
<td>91%</td>
<td>100%</td>
<td>97%</td>
<td>3.8%</td>
</tr>
<tr>
<td>Rh</td>
<td>108%</td>
<td>102%</td>
<td>103%</td>
<td>2.4%</td>
</tr>
<tr>
<td>Ru</td>
<td>106%</td>
<td>100%</td>
<td>102%</td>
<td>2.3%</td>
</tr>
<tr>
<td>Mo</td>
<td>107%</td>
<td>101%</td>
<td>103%</td>
<td>2.1%</td>
</tr>
<tr>
<td>Ni</td>
<td>109%</td>
<td>101%</td>
<td>100%</td>
<td>3.8%</td>
</tr>
<tr>
<td>V</td>
<td>106%</td>
<td>101%</td>
<td>100%</td>
<td>2.7%</td>
</tr>
<tr>
<td>Cu</td>
<td>106%</td>
<td>103%</td>
<td>102%</td>
<td>1.7%</td>
</tr>
</tbody>
</table>

メソッドの長期安定性試験の結果を Figure 5 に示します。1J 濃度の標準液を添加した試料を 7.5 時間に渡り測定した結果です(内標準補正なし)。この 7.5 時間安定性試験により、一般的な 1 日の労働時間内の変動を確認することと、内標準補正なしでの装置の変動特性を確認することができます。USP では全試料の測定前後での標準試料の変動を管理することを定めており、%RSD の基準は「20%以下」とされています。今回の結果は、全ての元素において基準を満たす結果となりました。

Figure 5. 1J 標準添加した風邪薬試料の 7.5 時間変動プロット
結論
本報では NexION300 ICP-MS の Chapter<232>、<233>への適応性を議論しました。NexION300 は、Chapter<232>で定められた 4 つの投与方法における 1 日許容曝露量 (PDE) 値を問題なく測定できることが示されました。また、Chapter<233>で定義されている QC やおよびバリデーションプロトコル基準も満たすことが確認されました。

参考文献
1. United States Pharmacopeia General Chapter <231> Heavy Metals Test in USP National Formulary (NF).

本レポートは以下を日本語訳したもので、"Benefits of the NexION 300X ICP-MS Coupled with the prepFAST In-line Auto-dilution/calibrations System for the Implementation of the New USP Chapters on Elemental Impurities", Application Note, 010599_01 (2012)。
新しいUSP Chapter<232>とChapter<233>の施行について:
製剤中の元素不純物
Implementation of USP New Chapters <232> and <233> on Elemental Impurities in Pharmaceutical Products

緒論
100年以上の間、米国内で販売される製剤中の不純物を測定する標準手法として、米国薬局方―国民医薬品集(USP-NF)1のChapter <231>に詳述された「重金属試験法」が適用されてきました。この試験法は、チオアセトアミドによる対象元素の硫化物を沈殿させる反応に基づいています。従来法では、試料中の全ての対象元素が鉛標準と同様な沈殿反応が起こると仮定し、これを目視で比較する比色法が採用されていました。USP重金属試験法の発出当初、この手法は、検体中の鉛濃度が 10 ppm以下である事を確認するスクリーニング・ツールとして規定されています。また、重金属試験法として収載されていましたが、Pb、Hg、Bi、As、Sb、Sn、Cd、Ag、Cu、Mo、Seのような多くの元素群を測定対象とし、これらを検出することが目的とされていました。しかし、この手法が全ての対象元素を検出できるのかという明確な定義は、記載されていませんでした。

この手法における制限要因の1つには、試料中の対象元素の硫化物形成メカニズムが標準液中の硫化鉛形成メカニズムと酷似し、試料マトリックスの影響を受けないという仮定を挙げることができます。しかし、溶液中においてコロイドを形成する多くの金属硫化物は、それぞれが全く異なる挙動を示します。さらに、この手法は硫化物沈殿が形成されてから、その沈殿物が不安定となるまでの短い時間内(5分以内)に、目視による比較を行うことが必要とされます。そのため、「重金属試験法」は目視による測定者間の判断基準が異なり、結果の真度や一貫性について微妙な相違を生じる可能性が高いことを指摘されていました。

この手法におけるもう一つの制限要因は、期待される検出能力を得るために約2 gの試料が必要とされることです。このような大量の試料を、初期の製剤開発段階で用意するのは困難な場合があります。また、600℃の灰化処理や試料残渣の酸溶解のような試料損失の傾向の高い試料調製手法は、結果をさらに複雑にしています。実際、いくつかの研究成果では、SeやHgのような揮発性元素の50%以上が灰化過程で損失されることを示しています。試料処理における金属元素の損失度は、試料中に共存するマトリックスの影響も受けています。また、この様な手法は時間のかかる煩雑な操作を伴い習熟度の差が生じやすいため、回収率は、測定者間において大きく変動します。
専門家委員会の調査結果
米国医学研究所(IOM)によって組織された2008年のワークショップの専門家委員会決議では、現在の金属元素測定に関する議論は不十分であり、多くの測定対象金属元素に対し、より広い選択性と高い感度を有する測定装置を用いた手法に変更すべきであることが示されました。そこで、委員会は適切な測定法を開発し、リスク管理評価と融合させ、どのような金属種が公衆衛生的に悪影響を及ぼすのかを把握する事から着手しました。毒性評価と製剤成分中の不純物濃度を把握するため、まず最初にPb、Hg、As、Cdについて調査を行う必要があるという合意が得られました。毒性評価に加えて、多くの製剤の生産過程で使用される金属触媒であるPt、Pd、Ru、Rh及びRbのようなPt族金属(PGMs)は、意図せず製品中に混入する可能性があるため、これら元素についても評価すべきであると示されました。また、有機金属化合物として使用される金属元素も、製造工程の広い範囲において製剤中に混入する危険があるため、これら元素も対象元素へ加えられました。混入経路に由来するリスク評価だけではなく、AsやHgのような金属の化学形態も重要視されています。例えば、海藻などから抽出された天然成分を含有する栄養補助食品は、有機h素を非常に高濃度で含んでいます。しかし、この毒性は無機h素と比べると、比較的高くない事が知られています。同様に、元素態水銀は比較的無害ですが、魚等の生体内に濃縮されるメチル水銀は非常に高い毒性を示すことが知られています。このような事から、総量評価だけでなく、対象元素により化学形態別測定の必要性が示されています。

Chapter <232> 及び Chapter <233>
ワークショップ参加者は、どの金属種を評価する必要があるのかを選択するだけでなく、それぞれの金属の毒性を設定する必要があったため、Chapter <231>を明らかに改定すべきであると考えられていました。また、彼らは産業界における国際基準の統一化を図るため、EU薬局方や日本薬局方のような主な国の薬局方との調和も必要であると指摘していきました。そのため、公定法を制定するにあたり、元素不純物に関する専門家委員会の編成が提案され、専門家委員には様々な業種の委員を選出することとされました。四年の期間における会議やワークショップを介し、元素不純物の測定における種々の工程に対し、専門家委員の意見交換が行われました。そして、新たにChapter <232> 及び Chapter <233>が2012年4月に公表される事に至りました。Chapter <232>では、経口製剤、非経口製剤(注射剤)、吸入製剤のような異なる投薬方法における一日最大摂取量から、対象元素やその毒性度が定義されました。Chapter <233>では、誘導結合プラズマ発光分光分析法(ICP-AES または ICP-OES)と誘導結合プラズマ質量分析法(ICP-MS)といった、二種類のプラズマ分析法の選択方法を含め、測定対象元素に対する測定手法や試料分解法について言及されています。

元素不純物に関するUSP 専門家委員会は、USP化学分析委員会に対し、USP 35–NF 30 (2012年12月1日公布)の第2追補として、これらの新しい項目を提起し、これらのChapterが策定されました(施行は2014年5月)。
Chapter <232> 元素不純物-毒性限度

表1 は、平均的な体重 50 kg の人に基づく製剤投薬量として 1 日許容暴露量(PDE、単位: μg/day)を示しています。元素不純物の毒性度は、生物学的利用能に関係しています。例えば、クロム暴露の許容範囲は、経口、非経口及び吸入といった三種類の投薬方法毎に設定されています。注射容量が 100 mL/day 以上であるとき、対象元素量は製剤を合成するのに用いた個々の化合物を含めて管理しなければならないと規定されています。これは大容量非経口投薬(LVP)限度量(単位: μg/g)として定義されており、そのLVP値を表1に示します。また、鼻腔投薬や皮膚投薬のような投薬方法では、Chapter<232>に示された経口投薬の PDE と同じ様に扱い、注意すべきであると位置づけています。これらの投薬方法毎のより詳細な情報は、Chapter <1151>の製剤の投薬形態と管理としてUSP-NFに収載されています。

本 Chapter では製剤の投薬方法に基づいた元素不純物の許容限度が定められています。これにより、製剤メーカーは製剤や賦形剤中の不純物濃度が許容範囲内であるかを評価することになります。表1では、経口、非経口及び吸入投薬の最大暴露量が 10g/day 以下であることを示しています。

<table>
<thead>
<tr>
<th>元素</th>
<th>口腔投薬 PDE (μg/day)</th>
<th>補液投薬 PDE (μg/g/day)</th>
<th>吸入投薬 PDE (μg/g/day)</th>
<th>LVP成分限界 (μg/g)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cd</td>
<td>25</td>
<td>2.5</td>
<td>1.5</td>
<td>0.25</td>
</tr>
<tr>
<td>Pb</td>
<td>15</td>
<td>5</td>
<td>5</td>
<td>0.5</td>
</tr>
<tr>
<td>Inorganic As</td>
<td>1.5</td>
<td>1.5</td>
<td>1.5</td>
<td>0.15</td>
</tr>
<tr>
<td>Inorganic Hg</td>
<td>15</td>
<td>1.5</td>
<td>1.5</td>
<td>0.15</td>
</tr>
<tr>
<td>Ir</td>
<td>100</td>
<td>10</td>
<td>1.5</td>
<td>1.0</td>
</tr>
<tr>
<td>Os</td>
<td>100</td>
<td>10</td>
<td>1.5</td>
<td>1.0</td>
</tr>
<tr>
<td>Pd</td>
<td>100</td>
<td>10</td>
<td>1.5</td>
<td>1.0</td>
</tr>
<tr>
<td>Pt</td>
<td>100</td>
<td>10</td>
<td>1.5</td>
<td>1.0</td>
</tr>
<tr>
<td>Rh</td>
<td>100</td>
<td>10</td>
<td>1.5</td>
<td>1.0</td>
</tr>
<tr>
<td>Ru</td>
<td>100</td>
<td>10</td>
<td>1.5</td>
<td>1.0</td>
</tr>
<tr>
<td>Cr</td>
<td>*</td>
<td>*</td>
<td>25</td>
<td>*</td>
</tr>
<tr>
<td>Mo</td>
<td>100</td>
<td>10</td>
<td>10</td>
<td>1.0</td>
</tr>
<tr>
<td>Ni</td>
<td>500</td>
<td>50</td>
<td>1.5</td>
<td>5.0</td>
</tr>
<tr>
<td>V</td>
<td>100</td>
<td>10</td>
<td>30</td>
<td>1.0</td>
</tr>
<tr>
<td>Cu</td>
<td>1000</td>
<td>1000</td>
<td>70</td>
<td>25</td>
</tr>
</tbody>
</table>

* Not a safety concern
Chapter <233> 元素不純物 - 操作手順

Chapter <233> では、前述した製剤中の元素不純物を測定するための試料調製法と、二種類の測定手法が示されています。また、本 Chapter では、バリデーション要件を満たす場合の代替手法に対する基準も記載されています。最初の測定手法は ICP 発光分光分析法であり、もう一方は ICP 質量分析法です。試料調製法は、双方の測定手法に適用することができます。

測定検体の調製法

測定検体は、四種の異なる手法を用いて調製することができます。

① 試料が適当な溶液状態である場合、希釈することなく検体とする
② 試料が水可溶性の場合、適切な水溶液に溶解させ検体とする
③ 試料が水不溶性の場合、適切な有機溶媒に溶解させ検体とする
④ 試料が不溶解性の場合、密閉系容器を用いたマイクロ波酸分解法で溶液化したものを検体とする

ICP 発光分光分析法や ICP 質量分析法を用いた測定手法において、装置パラメータの設定はとても重要ですが、ICP 発光分光分析装置の最適測定波長や ICP 質量分析装置の測定質量数等は、本 Chapter において詳述されていません。しかし、選択した分析装置が正常に動作していることを確認するために、本 Chapter には一連の QC/QA 手順の実施が明記されています。

手順 1: ICP 発光分光分析法

- 検量線作成の為、二種類の標準液が必要(2 倍のターゲット濃度(2J) 溶液と 0.5 倍のターゲット濃度(0.5J)溶液)
- J は製剤の投薬頻度に基づき、評価された元素不純物の許容値として定義
- 試料とマトリックス・マッチングした標準液を調製する際、標準液と検体は同じように調製
- 希釈した検体が 2J 溶液を上回らないように調製
- 信号安定性チェックとして、0.5J 溶液の測定を検体測定の前後に実施し、その誤差が±20%以内
- 75As における 40Ar 35Cl のようなマトリックス起因の多原子イオン干渉を補正するため、装置の測定条件や質量数の選択はメーカー推奨に準拠
- コリジョンリアクションセルは、多原子イオン干渉を軽減するために使用可
- より詳細な情報は、Chapter <730> USP プラズマ分光分析法に記載

代替手法

指定された測定手法が特殊な適用例に対し必要要件を満たさない場合、代替手法の使用が認められています。しかし、どんな代替手法であっても、完全にバリデートされ、指定された測定手法と同等であると評価する必要があります。例えば、ICP 発光分光分析法または ICP 質量分析法が適用できない場合、真度 (accuracy)、精度 (precision)、併行精度 (repeatability)、直線性-範囲 (liner-range) や検出性能 (detection-capability performance requirement) などの全てが必要要件を満たすことが確認されれば、フレームまたはグラファイトファーネス原子吸光光度法の様々な測定手法を代替法として用いることができます。より詳細な情報は、Chapter <1125> に詳述されています。
Optima 8x00 シリーズ ICP 発光分光分析装置
多元素同時測定法である ICP 発光分光分析法は、表1に列挙された元素不純物(白金族や遷移元素類)の PDE 濃度領域をほとんど測定することができます。一方、製剤の試料調製法は、いくつかの元 素の測定感度に重要な因子を担っています。そのため、できるだけ低い希釈率に抑えた溶液を調製することが可能であれば、ほとんどの元素の PDE 濃度領域で測定することができます。単純希釈あるいは密閉系分解容器による分解処理に伴う試料の希釈が必要な場合、検出下限の要件クリアーは困難となる場合があります。

Cd, Pb, As や Hg のような元素の PDE 値は、他の元素より非常に低いレベルに設定されています。そのため、ICP 発光分光分析法に対し、高い真度 (accuracy) や精度 (precision) で測定する場合、測定方法の工夫が必要となります。例えば ICP 発光分光分析法による As や Hg の検出下限は、水素化 物発生法を併用することにより、大きく改善することができます。この分析手法では試料を 100 倍に希釈しても、最も制限値が低いこれら元素の LVP 値レベルを検出することができます。

ICP 発光分光分析法による測定において重要なファクターは測定対象元素種や製剤の投薬方法であり、本法を分析手法として選択する前に、本法に対する慎重な評価が必要となります。

必要とされる ICP-OES の検出下限を満たし、データ・セキュリティ強化機能を有する PerkinElmer 社の Optima 8x00 シリーズ ICP 発光分光分析装置は、厳しい監査機関が要求する必要要件にも対応しています。Optima 8x00 シリーズに搭載されたデュアル測光機能は、広い濃度範囲を測定することを可能とします。更に、優れた干涉補正機能と特許を取得したフラットプレートプラズマテクノロジーは、本装置の使い易さを向上させ、容易な保守で運用することができます。

NexION 300 シリーズ ICP 質量分析装置
ICP 質量分析法は、製剤中に広い濃度範囲で存在する元素不純物を測定する最も適した多元素同時測定手法です。そのため、全ての異なる投薬法の中でも一番低い濃度レベルである LVP 値に対し、ICP 質量分析法の検出下限は比較的容易に到達することができます。LVP 値0.2 gの試料を100 mLの溶媒 へ溶解させた検体(500 倍希釈)の LVP 検算値をそれぞれ表2に示します。PerkinElmer 社の NexION 300 シリーズ ICP 質量分析装置の検出能力では、これらの LVP 値より 4 ～ 5桁低い値を得ることができます。また、この ICP 質量分析装置は液体クロマトグラフと接続し、As や Hg の化学形態別分析を行うことも可能です。

NexION 300 シリーズには、四種類のモデルがありますが、製剤試料の測定には、NexION 300X が適しています。本装置には、特許を取得しているユニバールセルテクノロジーが搭載されています。このモデルはスタンダード (標準) モードに加えて、セルガスを用いたコリジョン (KED) あるいはリアクション (DRC) モードにて測定することができます。表 2 には LVP 値と共に本装置のコリジョンモードとスタンダードモードを組み合わせて得られた検出下限値も併記しています。コリジョンモードは、塩酸を用いた分解/希釈した試料中の ArCl 干渉を受ける As のような元素に適用することができます。一方、PGMs のような元素は、塩 酸による多原子イオン干渉を受けないため、スタンダードモードを用いて測定することができます。
さらに、NexION300 シリーズのユニーバーサルセルテクノロジーが有する独特な特長の 1 つとして、EDR機能を挙げることができます。この特許を取得した技術は、製剤や機能性食品中の微量金属不純物や主要栄養塩元素の双方を同時に測定する際、非常に有用な機能を有しています。EDR機能を用いることにより測定範囲を広げ、低濃度から高濃度まで広範囲にわたって測定することが可能となります。これは、現在 review/comments段階にある、新規策定中のChapter <2232>栄養補助食品中の元素不純物の目的に合致しています。すなわち、NexIONは、栄養補助食品中の毒性含有物(Cd, Pb, As及びHg)とCa、Mg、NaとKのような主要栄養塩元素を多元素同時に測定することができるICP質量分析装置であります。

製剤試料にNexION 300Xを適用した結果、長時間におよぶ測定でも、とても優れた安定した結果を得ることができます。特許を取得したトリプルコーンインターフェイスは、イオンの拡散を抑制したイオンビームを形成させ、内部構造物へのイオンの付着を防ぐ構造となっています。また、新しい四重極イオンディフレクターと組み合わすことにより、微粒子や中性原子はユニーバーサルセルあるいは検出器に決して入込まないようになっています。そのため、イオン光学系の定期保守点検回数を激減させることができました。定期的にクリーニングを必要とするのはインターフェースコーンのみであり、クリーニング作業に時間のかかる煩雑な操作を伴うようなイオンレンズ、セルやコーン等の保守作業を必要としません。

更に、最高の装置パフォーマンスを維持する為、NexION 300Xの制御プログラムには、オイル交換やポンプチューブの交換時期を知らせることができるメンテナンスマインダー機能を有しています。このシステムでは、それぞれの構成部品の使用時間や異常探知結果を表示することができます。NexION300 シリーズのインターフェースデザインとイオン光学系は、25年にも渡る技術開発に裏付けられたPerkinElmerテクノロジーの成果の賜物となっています。

<table>
<thead>
<tr>
<th>Element</th>
<th>LVP Component Limit(μg/g)</th>
<th>Level Based on Sample Prep of 0.2g/100mL (ppb)</th>
<th>NexION300 ICP-MS Detection Capability Lower than LVP Limit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cd</td>
<td>0.25</td>
<td>0.5</td>
<td>10^2</td>
</tr>
<tr>
<td>Pb</td>
<td>0.5</td>
<td>1.0</td>
<td>10^3</td>
</tr>
<tr>
<td>Inorg-As</td>
<td>0.15</td>
<td>0.3</td>
<td>10^2</td>
</tr>
<tr>
<td>Inorg-Hg</td>
<td>0.15</td>
<td>0.3</td>
<td>10^3</td>
</tr>
<tr>
<td>Ir</td>
<td>1.0</td>
<td>2.0</td>
<td>10^3</td>
</tr>
<tr>
<td>Os</td>
<td>1.0</td>
<td>2.0</td>
<td>10^3</td>
</tr>
<tr>
<td>Pd</td>
<td>1.0</td>
<td>2.0</td>
<td>10^3</td>
</tr>
<tr>
<td>Pt</td>
<td>1.0</td>
<td>2.0</td>
<td>10^3</td>
</tr>
<tr>
<td>Rh</td>
<td>1.0</td>
<td>2.0</td>
<td>10^4</td>
</tr>
<tr>
<td>Ru</td>
<td>1.0</td>
<td>2.0</td>
<td>10^4</td>
</tr>
<tr>
<td>Mo</td>
<td>5.0</td>
<td>10.0</td>
<td>10^5</td>
</tr>
<tr>
<td>Ni</td>
<td>1.0</td>
<td>2.0</td>
<td>10^5</td>
</tr>
<tr>
<td>Cu</td>
<td>25</td>
<td>500</td>
<td>10^5</td>
</tr>
</tbody>
</table>
マイクロウェーブ試料前処理システム
PerkinElmer は、Titan MPS マイクロウェーブ試料前処理システム (Chapter <233>) によって示された高性能密閉容器系試料分解装置に適合しています。Titan MPS システムは、独特な非接触型光学方式の DTC と DPC テクノロジーを搭載しています。これらは分解反応をコントロールし、一貫した分解結果を得るために、各々の分解容器の温度・圧力を正確にモニターしています。本システムで使用する TFM 分解容器は、高い堅牢性と優れた操作性を併せ持っています。更に、この容器は測定時における Chapter <232> の検出下限要件を満たすため、非常に低いバックグラウンドに抑えられており、安心して試料前処理に運用することができます。業界初となる分解容器の 1 年間保証を有している点は、特筆すべき点として挙げることができます。※一定の条件を満たしている場合に、適用されます。

規制遵守
140ヶ国以上の国々で参照されている USP 薬事法は、米国医薬品局 (FDA) によって米国内において運用されています。製剤生産における規制遵守の重要性は、どんなに強調してもしません。1997 年 3 月に、FDA より発出された 21CFR パート 11 において、電子記録及び電子署名がそれぞれ紙媒体の記録及びこれに手書きされた署名と同等の信頼性が確保されなければならないことを示しました。全ての FDA 案件に適用されるこの規則は、公衆衛生を保護し、電子データの濫用、偽造または不注意による誤入力を確実に防ぐことも目的としています。また、この規則は、最高水準にある電子テクノロジーを用いた広範囲に渡る用途に対し、適用されています。21CFR パート 11 には、コンピュータ化システムが紙媒体記録上の手書きサインに代わる電子署名と電子記録の使用を認める詳細な必要要件が述べられています。

- スタンダローン型やネットワークシステムに組み込まれたものに限らず、全てのコンピュータ化システムに対しバリデーションを実施
- コンピュータ化システムへのアクセス権限を管理
- 電子記録内容の完全性を確保
- 電子記録上への電子署名の使用手順を完備
- 全ての電子記録/署名に対する監査履歴を完備
- 電子記録へのアクセス権限を管理

図 3 NexION 300 のイオン光学系外観

図 4 Titan MPS マイクロウェーブ試料前処理システム
これらの必要要件を満たすためには、コンピュータ化システムの開発、メンテナンスあるいは電子記録や電子署名を使用する人々に対し、教育やトレーニングの実施あるいはこれら要件を含む経験を積ませ、運用管理が適切に実施されていなければならないと明記されています。

21 CFRパート11の遵守には使用者のトレーサビリティを有するだけではなく、システム動作の健全性や記録の保存・管理を確実に維持することができる適切な策を講じたシステム設計が必要とされています。

そのため、NexION 300シリーズとOptimaシリーズでは、Enhanced Security (ES)ソフトウェアをオプションとして完備しています。本ソフトウェアは全ての記録を確実に保持し、高い安全性とトレーサビリティ機能を有するといったUSPの必要要件に適合した機能を有しています。

また、PerkinElmerでは、IQ(設置確認)及びOQ(動作確認)のサービスも提供しています。IQでは、装置が適切な安全管理下において仕様書に従い、設置・インストールされたことを確認します。OQでは、全ての装置やアクセサリー等が前述した制限下あるいは許容差内で完全に動作することを検証します。

まとめ

本報では、製剤中の元素不純物に関する新しいUSPのChapterの概要を紹介いたしました。製剤中の元素不純物に関する基準値はChapter <232>で、Chapter <233>ではその分析手法について示されています。これら新しいChapterは、Chapter <231>で詳述されてきた古い「重金属試験法」が二つの新しいChapterに改定されたものです。また、Chapter <2232>では、栄養補助食品中の元素不純物に関する規制が示されています。このChapterは、現在、USPにおいてreview/comments段階にあります。これらのChapterを踏まえ、PerkinElmer社のICP発光分光分析装置やICP質量分析装置を用いた製剤中の元素不純物の測定を実施する際、どの様にアプローチするのかを紹介いたしました。

50年以上の微量金属分析の経験を有するPerkinElmerが、USP Chapter <232>、Chapter <233>及びChapter <2232>の必要要件に合致したマイクロウェーブ戦前処理システム、ICP発光分光分析装置及びICP質量分析装置を提供しています。

参考文献

1. General Chapter <231> Heavy Metals Test in USP National Formulary (NF)
2. General Chapter <232> Elemental Impurities – Limits: 2nd Supplement of USP 35-NF 30
3. General Chapter <233> Elemental Impurities – Procedures: 2nd Supplement of USP 35-NF 30
4. General Chapter <1151> Pharmaceutical Dosage Forms – Routes of Administration in USP National Formulary (NF)
5. General Chapter <730> Plasma spectrochemistry Method in USP National Formulary (NF)
6. General Chapter <1225> Validation of Compendial Procedures in USP National Formulary (NF)
7. General Chapter <2232> Elemental Contamination in Dietary Supplement (still in the USP review/comments stage)

本レポートは以下を日本語訳したものでです。

PerkinElmerは本文章に誤りが発見された場合、あるいは本文章の使用により付随的又は間接的に生じた損害について一切を責とさせていただきます。
株式会社パーキンエルマジャパン
www.perkinelmer.co.jp

EH分析事業部

本社 〒240-0006 横浜市保土ケ谷区神明町134 神明テクノパークテクニカルセンター4F
TEL (045) 339-5861 FAX (045) 339-5871

大阪支社 〒554-0051 大阪府大阪市中央区南港5-3
TEL (06) 6386-6004 FAX (06) 6386-7009

東京都営業所 〒110-0014 東京都千代田区神田駕場町1-7-17 CTRビル 5F
TEL (03) 3866-2647 FAX (03) 3866-2652

名古屋営業所 〒450-0002 愛知県名古屋市中村区名駅4-6-23 第3国際ビル 5F
TEL (052) 589-7066

九州営業所 〒811-0013 福岡市博多区博多駅前第1-12-6 花村ビル 2F
TEL (092) 473-7001 FAX (092) 473-8353

©2014 PerkinElmer Japan Co., Ltd. June 2014